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Besides contract tracing, the fight against the COVID-19 pandemic has highlighted the importance and benefits

of recommending paths that reduce the exposure to and the spread of the SARS-CoV-2 coronavirus by avoiding

crowded indoor or outdoor areas. Existing path discovery techniques are inadequate for coping with such

dynamic and heterogeneous (indoor and outdoor) environments—they typically find an optimal path assuming

a homogeneous and/or static graph, and hence they cannot be used to support contact avoidance. In this paper

we pose the need for Mobile Contact Avoidance Navigation, and propose ASTRO (Accessible Spatio-Temporal

Route Optimization), a novel graph-based path discovering algorithm that can reduce the risk of COVID-19

exposure by taking into consideration the congestion in indoor spaces. ASTRO operates in an 𝐴∗ manner to

find the most promising path for safe movement within and across multiple buildings without constructing the

full graph. For its path finding, ASTRO requires predicting congestion in corridors and hallways. Consequently,

we propose a new grid-based partitioning scheme combined with a hash-based two-level structure to store

congestion models, called CM-Structure, which enables on-the-fly forecasting of congestion in corridors and

hallways. We demonstrate the effectiveness of ASTRO and the accuracy of CM-Structure’s congestion models

empirically with realistic datasets, showing up to 1 order of magnitude reduction in COVID-19 exposure.
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1 INTRODUCTION
The COVID-19 pandemic dramatically impacted the mobility behavior of people, from indoor and

outdoor pedestrian movement to public transportation and ride-sharing [23]. COVID-19 is highly

contagious and a high percentage of infected people do not initially exhibit symptoms, making

Contact Tracing (CT) a crucial task [4]. The biggest problem with human-based CT is that it is

relatively slow (i.e., high latency) and cannot cope with the speed at which the virus spreads under

∗
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Fig. 1. (left) The public are being advised to take every precaution to avoid the extreme heat in Japan (BBC
2018), (center) US airports experienced their highest passenger numbers during Thanksgiving holiday since
March 2020 (BBC 2020), (right) An elementary school closed due to cold weather in Des Moines, Iowa (CNN
2019).

loose distancing measures [19]. Thus, governments showed interest in building computerized

systems and applications that can automate the contact tracing process and address the challenges

of the high latency tracing procedure and massive human effort. However, the so-called Mobile
Contact Tracing Applications (MCTAs) [19, 53] are not producing the expected results because of low
participation rates and a lack of user trust due to privacy concerns [38, 52]. Furthermore, MCTAs

only focus on detecting the spread of the SARS-CoV-2 coronavirus, but not on reducing the risk of

COVID-19 exposure of individuals.

We clearly need preventive measures to reduce the risk of COVID-19 exposure to people. The

exposure risk can be reduced by observing social distancing, avoiding public transportation and

ride-sharing, and as long as weather conditions permit, by walking through outdoor paths. On

the other hand, during winter, with subfreezing temperatures (as seen in Figure 1 - right), and

during summer, with extreme heat and poor air quality (as seen in Figure 1 - left), minimizing the

outdoor exposure is a necessity and indoor paths are desirable. Thus, indoor paths are desirable,

if not unavoidable, and moving indoors through congested pathways dramatically increases the

risk of exposure to airborne viruses
1
(as seen in Figure 1 - center). According to the US Centers

for Disease Control and Prevention (CDC), human coronaviruses and influenza, like any other

crowd disease, most commonly spread from an infected person to others through the air by coughs,

sneezes, and close personal contact, such as touching or shaking hands. That is, walking along

congested pathways remains one of the most common ways for a person to contract the SARS-

CoV-2 coronavirus. This clearly highlights the importance of contact avoidance, besides contact
tracing, in the fight against the COVID-19 pandemic, and the need for Mobile Contact Avoidance
Navigation (MCAN) solutions that avoid crowded indoor hallways and indoor spaces. Posing the

need for MCAN constitutes the broader impact of this paper.

MCAN solutions must satisfy the following four criteria to be effective and efficient: (i) be

inclusive (i.e., consider with mobility barriers); (ii) be context-aware (i.e., adapt its recommendation

at any given time based on the current situation); (iii) be location-aware (i.e., deal with the congestion

in specific locations); and (iv) be practical (i.e., provide a holistic/end-to-end path.)

As these four criteria are not conflicting requirements, multi-objective navigation solutions are

not applicable. Furthermore, for most current navigation solutions, these criteria focus on indoor or

outdoor routing. Only a handful of the state-of-the-art solutions consider indoor-outdoor seamless

transition techniques [35], but not a unified model that can support end-to-end path search [24].

Moreover, existing indoor solutions cannot support contact avoidance and reduce the risk of

COVID-19 exposure by being oblivious to the congestion and movement directionality in corridors

1
Centers for Disease Control and Prevention: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-

spreads.html
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and hallways [42]. These solutions typically find an optimal path by assuming a homogeneous

and/or static graph, and cannot operate over time-varying dynamic graphs [21], which are inherent

in the presence of congestion that changes over time.

Dynamically constructing a graph for path discovery with multiple constraints is very expensive,

especially when the graph is complete (fully connected), which should be expected in MCAN

solutions. Considering a real scenario where all outdoor vertices 𝑉𝑜 (i.e., buildings) are connected

using all indoor vertices 𝑉𝑖 (i.e., doors) the complexity for the construction is O(|𝑉𝑖 |2) while the
maximum number of edges are |𝐸 | = |𝑉𝑖 |∗( |𝑉𝑖 |−1)

2
= 𝑂 ( |𝑉𝑖 |2). The complexity for finding the path

with a well-known algorithm such as Dijkstra is O(|𝑉𝑖 |2 + |𝑉𝑖 | ∗ 𝑙𝑜𝑔 |𝑉𝑖 |). Whereas, the complexity

of the state-of-the-art temporal path discovery algorithm in a dynamic graph described in [55] is

O(|𝑉𝑖 | + |𝑉𝑖 |2 ∗ 𝑙𝑜𝑔|𝑉𝑖 |). To the best of our knowledge, none of the existing path finding algorithms

can efficiently discover optimal paths with constraints in an indoor-outdoor complete graph to

meet MCAN requirements. Therefore, in this work we address the problem of fast and incremental
temporal path discovery for an indoor-outdoor graph.

In this paper we propose ASTRO (Accessible Spatio-Temporal Route Optimization) for fast and

incremental temporal path discovery for an indoor-outdoor graph. ASTRO is a novel graph-based

path finding algorithm that takes into consideration indoor congested spaces and can reduce

the risk of COVID-19 exposure. ASTRO can operate over time-varying dynamic graphs without

constructing the complete graph. It integrates outdoor nodes (i.e., buildings) with indoor nodes

(e.g., doors, stairs, escalators, elevators) to efficiently provide a personalized contact avoidance path

satisfying a user-specified set of constraints (i.e., accessibility requirements, congestion tolerance,

arrival time, and outdoor exposure). ASTRO uses time to innovatively unify indoor congestion and

travel distance in an 𝐴∗ search with a complexity of O(|𝑉𝑖 |2). However, our experiments over real

datasets verify that the worst case scenario will rarely happen due to the greedy𝐴∗ search reduction
approach. The congestion of each indoor path segment is predicted based on the estimated arrival

time at a segment and converted into travel time slowdown (i.e., delay).

ASTRO’s second innovation is a new grid-based partitioning scheme, named Building Grid Layout,
combined with a multilevel access method, called Congestion Model Structure (CM-Structure), which
supports efficient retrieval of the congestion predictionmodels during the path finding.CM-Structure
is also used to store the trained forecasting models of each corridor and hallway segment. We use

machine learning to build a congestion model for each indoor segment (i.e., corridor or hallway).

We evaluate our algorithms experimentally using two realistic datasets consisting of buildings at

the University of Pittsburgh and University of Cyprus. Our experiments show that a Fully Connected
Recurrent Neural Network (FC-RNN) is most suitable to be used for congestion prediction since it

offers very low inference time while requiring less memory than other commonly used models.

Additionally, FC-RNN is proven to support continuous (lifelong) learning [15] so models can be

re-trained in an online fashion to keep up with the ever-changing dynamics of the congestion.

Similarly, CM-Structure with hash access method provides the most efficient storage and retrieval

of the congestion models relevant to an indoor path. Our experiments also show that ASTRO using

CM-Structure and FC-RNN can reduce congestion by up to one order of magnitude while incurring

low response time.

Towards developing the first MCAN solution, the contributions of this paper are summarized as

follows:

• We propose a novel efficient routing algorithm, dubbed ASTRO, for contact avoidance in
which all combinations of every building’s entrances and exits are instantiated as separate

nodes in an incrementally created search graph.

3
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• We propose the use of prediction models that support continuous learning to forecast con-

gestion in indoor spaces.

• Wepropose a novel partitioning scheme and algorithm, called Building Grid Layout, that works
in conjunction with CM-Structure, a new access method to organize the trained congestion

models, enabling on-the-fly congestion forecasting in hallways and corridors.

• We propose a method to generate realistic indoor congestion datasets for experimental

evaluation when real datasets are not available.

• We measure the efficiency of ASTRO and the congestion models using two realistic datasets,

showing that ASTRO produces an optimal path in terms of both satisfying the user-provided

constraints and minimizing the travel time, while reducing COVID-19 exposure by up to one

order of magnitude.

The remainder of the paper is structured as follows: Section 2 formulates the problem and

introduces our novel ASTRO algorithm. Section 3 describes the procedures we employ in order to

accurately forecast the congestion in corridors. Section 4 outlines the steps we employ in order to

generate realistic indoor congestion datasets. Section 5 presents an experimental evaluation of our

proposed ASTRO algorithm and the congestion predictive models. Section 6 discusses related work

and Section 7 concludes the paper and discusses future work.

2 CONTEXT-AWARE PATH RECOMMENDATION FOR CONTACT AVOIDANCE
In this section, we formulate theMobile Contact Avoidance Navigation (MCAN) problem and present

our solution. First, we formalize our system model and underlying assumptions of our solution

(Section 2.1) and then introduce our ASTRO algorithm (Section 2.2) and its implementation details

(Section 2.3).

2.1 Problem Formulation
The objective of MCAN is to find a safe path between two locations for a given individual. Such

a safe personalized path considers the preferences or constraints of an individual which include

any accessibility restrictions, departure and arrival time requirements, time spent outdoors at any

given period, and congestion tolerance. Congestion tolerance is the degree/level of congestion

that an individual can navigate through a crowded space with significantly reduced COVID-19

exposure risk. This risk depends on the vaccination and the masking of an individual. According to

CDC, staying over 15 minutes in an indoor, congested space dramatically increases the COVID-19

exposure risk depending on the quality of the mask. The median type of mask used provides a

squared protection factor of the spreader and infectee PF2 =2 (reducing infection virus inhalation

by only 51%). In contrast, the use of available higher quality masks (KN95) produces a PF2 =400; a

reduction of 99.75% or 200x reduction in airborne infection when compared to the median cloth

mask. Consequently, an individual wearing a KN95 mask can specify high congestion tolerance.

We are assuming the typical graph representation of urban topology𝐺 (𝐵∪𝐷, 𝐸𝑜 ∪𝐸𝑖 ) consisting
of outdoor vertices 𝐵 representing buildings enhanced with the indoor vertices 𝐷 representing

entrances or exits (e.g., doors) as shown in Figure 2. Within each building edges 𝑒𝑖 (𝑒𝑖 ∈ 𝐸𝑖 ) are
corridors connecting entrances and exits. Each corridor is segmented into fixed area cells with

predefined maximum density (shown in color/shaded in Figure 2). The actual density of a cell on a

given date and time quantifies the cell’s congestion at that timestamp.

The constraints that defined the context of MCAN and our solution are as follows. The notation

is summarized in Table 1.
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Fig. 2. ASTRO is an algorithm that can recommend a path with the limited outdoor exposure and congestion,
while keeping the travel time low for each request along with the corresponding source and final destination.
The red solid line represents a path without any constraints, the green dashed line represents a path with 7.5
minutes outdoor exposure limit, and the dotted blue path avoids the buildings 𝑏2 and 𝑏4, which are highly
congested, marked in black color.

Definition 2.1: Accessibility (A) is a binary constraint that represents the requirement for handicap-

accessible doors and corridors. For example, sufficiently wide doors (both into and in the building),

with easily accessible automatic door openers and ramps.

Definition 2.2: Outdoor Exposure Limit (OE) is the duration in seconds of a path or segment of

a path that is exposed to outdoors conditions, i.e., 𝑂𝐸 ∈ [0,∞). Specifically, if 𝑂𝐸 = 0, then only

indoor paths will be considered. In contrast, if 𝑂𝐸 = ∞, the constraint is ignored.

Definition 2.3: Congestion Tolerance Limit (CT) is the percentage of the density (i.e., number of

people in a unit of indoor space), which is acceptable to go through a hallway or a corridor. For

example a congestion tolerance limit of 50% (𝐶𝑇 = 0.5) in 9𝑚2
(3x3 m) indoor space will be 4.5,

assuming that an individual occupies 1𝑚2
.

These three constraints are sufficient to express a wide range of preferences for pedestrians.

For example a pedestrian can: (i) set lower outdoor exposure tolerance when there is a heatwave,

or polar vortex; (ii) set higher congestion tolerance if vaccinated or wears KN95 mask; and (iii)

enable accessibility when they prefer to avoid stairs, revolving doors, etc. Another example beyond

contact-avoidance of the generality of ASTRO with the three constraints is the use of congestion

tolerance to address social anxiety and overstimulation conditions.
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Table 1. Summary of Notation

Notation Description
𝐵 set of all outdoor vertices (e.g., buildings) 𝑗 = 1, . . . , 𝑛

𝑏𝑖 an outdoor vertex 𝑏𝑖 ∈ 𝐵
𝐷 set of all indoor vertices (e.g., door) 𝑙 = 1, . . . ,𝑚

𝑑𝑖 indoor vertex 𝑑𝑖 ∈ 𝐷 for an outdoor vertex 𝑏

𝑡 travel time

𝑜/𝑂𝐸 outdoor exposure / outdoor exposure limit

𝑐/𝐶𝑇 congestion / congestion tolerance limit

𝐴 accessibility

𝜃 set of constraints (𝐴,𝑂𝐸,𝐶𝑇 )

𝑀 indexed set of the models

Research Goal: Given a set of buildings (i.e., outdoor vertices) and their floor plans (e.g., corridors,
doors, and rooms) along with an origin and a destination point, ASTRO aims to produce a path with
the minimal total travel time from the origin to the destination that satisfies the accessibility constraint
(𝐴), the outdoor exposure limit (𝑂𝐸), and the congestion tolerance limit (𝐶𝑇 ).

The effectiveness of our proposed technique in achieving the above goal is measured as follows:

Definition 2.4: Total Travel Time (T) is the total travel time of the path between the source and

the destination point. This is the sum of the total outdoor exposure time (i.e., the duration of the

path that is exposed to outdoors conditions) and the total indoor time (i.e., the duration of the path

that is indoors). The indoor time includes the slowdown (i.e., delays) in going through a congested

hallway or corridor.

Definition 2.5: Congestion Reduction (C) is the indoor congestion of the path between the source

and the destination point compared to a shortest path oblivious to congestion.

ASTRO is a single-objective (i.e., minimizing 𝑇 ) and multi-constrained (i.e., satisfying the set of

constraints {𝐴,𝑂𝐸,𝐶𝑇 }) path finding algorithm. Particularly, ASTRO discovers a feasible path (with

respect to the aforementioned constraints) that is optimal path in terms of total travel time.

2.2 The ASTRO Algorithm
As mentioned above, the ASTRO algorithm behaves as an 𝐴∗ traversal algorithm on a time-varying

graph in which the unit of cost is time—both the distance covered 𝑔(𝑛) (gScore) from start until the

current node 𝑛, which includes indoor congestion delays, and the heuristic function ℎ(𝑛) of the
remaining distance to the destination are expressed in terms of time. The time is calculated based on

the average walking speed 1.4 m/s [6, 25]. ASTRO avoids the expensive construction of a complete

graph 𝐺 by pruning the edges and paths that do not satisfy the constraints 𝜃 = (𝐴,𝑂𝐸,𝐶𝑇 ) of
accessibility, outdoor exposure, and congestion tolerance limits, and incrementally explores the

constraint-satisfying search space (graph 𝐺 ′) to find the best path.

Specifically,the algorithm integrates the outdoor and indoor travel time contributions as a weight

on the outdoor edges (i.e., outdoor paths connecting pairs of buildings). That is, as shown in Figure 2,

the weight𝑤1.2,3.1 of the edge from 𝑏1 to 𝑏3 records the time 𝑜 to reach from building 𝑏1 to building

𝑏3, plus the indoor time 𝑖 between the entrance door 𝑑1 and exit door 𝑑2 in 𝑏3. In other words,𝑤1.2,3.1
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Fig. 3. (left) ASTRO execution example when a constraint of 450s outdoor exposure limit is specified and (right)
when an additional constraint of 0% congestion tolerance limit is specified.

is the total time from the exit door 𝑑2 of 𝑏1 to exit door 𝑑2 of 𝑏3 plus any delay due to congestion 𝑐

(i.e, 𝑡 = 𝑜 + 𝑖 + 𝑖 ∗ 𝑐). ASTRO’s innovation is the time-varying exploration of every combination of

an entrance 𝑑𝑖 and an exit 𝑑 𝑗 of a building 𝑏 as a separate node 𝑏𝑑𝑖 ,𝑑 𝑗
in 𝐺 ′.

The indoor travel time 𝑖 is calculated using the indoor distance provided by Anyplace [54] and

the average walking speed. As indicated above, ASTRO calculates the delay due to congestion 𝑐

as a percentage of the original indoor travel time. For example, if the original indoor time 𝑖 = 10s

and there is 50% congestion, then the congestion delay is 5s. The congestion is predicted for each

segment of the indoor path using the CM-Structure described in Section 3.

At each iteration until reaching the destination, ASTRO visits all nodes 𝑏𝑑𝑖 ,𝑑 𝑗
that satisfy the 𝑂𝐸

constraint (shown with circles in Figure 2) and have 𝑑𝑖 and 𝑑 𝑗 satisfying the 𝐴 constraint. ASTRO
prunes out those that do not satisfy the 𝐶𝑇 constraint, and selects the node with the minimum

𝑓 (𝑛) (𝑓 𝑆𝑐𝑜𝑟𝑒) to expand the path. The 𝑓 𝑆𝑐𝑜𝑟𝑒 of a node 𝑛 is defined as follows:

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛)

𝑤ℎ𝑒𝑟𝑒 𝑔(𝑛) =
∑︁

∀𝑝𝑎𝑖𝑟𝑠 𝑏𝑘 .𝑑 𝑗 ,𝑏𝑙 .𝑑𝑖 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑎𝑡ℎ

𝑤 (𝑏𝑘 .𝑑 𝑗 , 𝑏𝑙 .𝑑𝑖 ) (1)

ASTRO uses a priority queue, named 𝑂𝑃𝐸𝑁 , to sort the nodes based on 𝑓 𝑆𝑐𝑜𝑟𝑒 and one set,

named 𝐶𝐿𝑂𝑆𝐸𝐷 , to store the visited nodes.

Theorem 2.1. ASTRO is optimal.

Proof. ASTRO as an 𝐴∗ variant is optimal [22]. ASTRO (Algorithm 2) satisfies the two criteria

of 𝐴∗ optimality:

(1) ASTRO expands only nodes whose 𝑓 -values are less (or equal) to the optimal cost path P*

(𝑓 (𝑛) is less-or-equal than P*).

(2) The evaluation function of a goal node along an optimal path equals P*.

□
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Algorithm 1 - Calculate Status Function used in Algorithm 2

Input: 𝑖𝑛: indoor vertex; 𝑜𝑢𝑡 : indoor vertex; 𝑡𝑖𝑚𝑒 : travel time;

Output: ®𝑠: status;
1: function CalcStatus(𝑖𝑛, 𝑜𝑢𝑡, 𝑡𝑖𝑚𝑒)

2: if (𝑖𝑛, 𝑜𝑢𝑡) in the same building then ⊲ If the path is indoors

3: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(CM-Structure, 𝑖𝑛, 𝑜𝑢𝑡, 𝑡𝑖𝑚𝑒)
4: 𝑖𝑛𝑑𝑜𝑜𝑟 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑛, 𝑜𝑢𝑡) ÷ 𝑎𝑣𝑔_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
5: 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 ← 0

6: else
7: 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 ← 0

8: 𝑖𝑛𝑑𝑜𝑜𝑟 ← 0

9: 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖𝑛, 𝑜𝑢𝑡) ÷ 𝑎𝑣𝑔_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
10: end if
11: 𝑡𝑖𝑚𝑒 ← 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 + 𝑖𝑛𝑑𝑜𝑜𝑟 + 𝑖𝑛𝑑𝑜𝑜𝑟 ∗ 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛
12: ®𝑠 ← (𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛, 𝑜𝑢𝑡𝑑𝑜𝑜𝑟, 𝑖𝑛𝑑𝑜𝑜𝑟, 𝑡𝑖𝑚𝑒)
13: return 𝑠

14: end function

Example: In order to illustrate ASTRO in action, consider again the set of buildings in Figure 2 where

a user wants to travel from a source 𝑠𝑡𝑎𝑟𝑡 to the destination 𝑔𝑜𝑎𝑙 . Both 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙 are outdoor

vertices with only one indoor vertex. For sake of simplicity, the outdoor vertices representing

buildings correspond to only unidirectional pairs of indoor vertices (doors) that define an indoor

path (e.g., only 𝑏1𝑑1,𝑑2 is added into the queue, but not 𝑏1𝑑2,𝑑1). Additionally, each metric unit on

Figure 2 maps to one minute.

Firstly, the 𝑔𝑆𝑐𝑜𝑟𝑒 and 𝑓 𝑆𝑐𝑜𝑟𝑒 are computed for the 𝑠𝑡𝑎𝑟𝑡 vertex (𝑠𝑡𝑎𝑟𝑡 (𝑔=0, 𝑓 = 16.6)) and then

𝑠𝑡𝑎𝑟𝑡 is placed into 𝑂𝑃𝐸𝑁 . Then ASTRO expands all neighboring nodes of 𝑠𝑡𝑎𝑟𝑡 calculating the

weights, 𝑔𝑆𝑐𝑜𝑟𝑒 , and 𝑓 𝑆𝑐𝑜𝑟𝑒 . We illustrate how the next steps change: (i) when a constraint of

450s outdoor exposure limit is specified; and (ii) when an additional constraint of 0% congestion

tolerance limit (i.e., avoid the congested buildings) is specified. Particularly:

(i) With 450 seconds outdoor exposure limit: The 𝑂𝑃𝐸𝑁 queue changes to {𝑏2𝑑1,𝑑2 (𝑔=8, 𝑓 =18),
𝑏1𝑑1,𝑑2 (𝑔=6.2, 𝑓 =19.4))} and the𝐶𝐿𝑂𝑆𝐸𝐷 set to {𝑠𝑡𝑎𝑟𝑡 (𝑔=0, 𝑓 =16.6)}, as shown in Figure 3 (Iteration
1 - left). This happens because only the 𝑏2 and 𝑏1 satisfy the 450 seconds constraint starting from

the 𝑠𝑡𝑎𝑟𝑡 node. In the second iteration, the first element from the𝑂𝑃𝐸𝑁 queue is dequeued, which is

𝑏2𝑑1,𝑑2 (𝑔=8, 𝑓 =18) and the weight, 𝑔𝑆𝑐𝑜𝑟𝑒 , and 𝑓 𝑆𝑐𝑜𝑟𝑒 for each of its neighbor is calculated. Specif-

ically, the 𝑔𝑆𝑐𝑜𝑟𝑒 and 𝑓 𝑆𝑐𝑜𝑟𝑒 are calculated for 𝑏1, 𝑏3, 𝑏4, and 𝑔𝑜𝑎𝑙 resulting in the addition only of

𝑏4 and 𝑏3 to the𝑂𝑃𝐸𝑁 queue as shown in Figure 3 (Iteration 2 - left). The 𝑔𝑜𝑎𝑙 ’s outdoor time from

𝑏2 is more than 450 seconds, thus it is not enqueued. In the third iteration, 𝑏4𝑑1,𝑑2 (𝑔=16.8, 𝑓 =19.0) is
dequeued and the weights and scores for 𝑏1, 𝑏3, and 𝑔𝑜𝑎𝑙 are calculated. This results in an updated

𝑂𝑃𝐸𝑁 queue and 𝐶𝐿𝑂𝑆𝐸𝐷 set as shown in Figure 3 (Iteration 3 - left). In the last iteration, 𝑔𝑜𝑎𝑙 is

dequeued, the search stops (line 7), and the path is reconstructed (shown as a green dashed line in

Figure 2).

(ii) With 450 seconds outdoor exposure limit and congestion tolerance limit: The priority queue

𝑂𝑃𝐸𝑁 changes to {𝑏1𝑑1,𝑑2 (𝑔=6.2, 𝑓 =19.4)} and the 𝐶𝐿𝑂𝑆𝐸𝐷 set is {𝑠𝑡𝑎𝑟𝑡 (𝑔=0, 𝑓 =16.6)}, as shown
in Figure 3 (Iteration 1 - right). This happens because only the 𝑏1 satisfies the constraints from the

𝑠𝑡𝑎𝑟𝑡 node. In the second iteration, the first element from the𝑂𝑃𝐸𝑁 queue is dequeued again, which

is 𝑏1𝑑1,𝑑2 (𝑔=6.2, 𝑓 =19.4) and the weight, 𝑔𝑆𝑐𝑜𝑟𝑒 , and 𝑓 𝑆𝑐𝑜𝑟𝑒 for each of its neighbor are calculated.
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Specifically, the 𝑔𝑆𝑐𝑜𝑟𝑒 and 𝑓 𝑆𝑐𝑜𝑟𝑒 are calculated for 𝑏3, and 𝑔𝑜𝑎𝑙 resulting in the addition only of

𝑏3 to the 𝑂𝑃𝐸𝑁 queue, as shown in Figure 3 (Iteration 2 - right). The outdoor time from 𝑏1 to 𝑔𝑜𝑎𝑙

is more than 450 seconds, and 𝑏2 and 𝑏4 are highly congested and hence 𝑏1, 𝑏2 and 𝑏3 are pruned

out. In the third iteration, 𝑏3𝑑1,𝑑2 (𝑔=12.7, 𝑓 =19.7) is dequeued and the weights and scores for 𝑔𝑜𝑎𝑙

are recalculated. This results in an updated 𝑂𝑃𝐸𝑁 queue and 𝐶𝐿𝑂𝑆𝐸𝐷 set, as shown in Figure 3

(Iteration 3 - right). In the last iteration, 𝑔𝑜𝑎𝑙 is dequeued, the search stops (line 7) and the path is

reconstructed (shown as a blue dotted line in Figure 2).

2.3 The ASTRO Implementation
This section describes the details of the implementation along with the internal data structures

used in ASTRO. To guarantee the correctness of the path, ASTRO uniquely determines an outdoor

vertex based on the building identification code and the indoor path, i.e, the pair of the indoor

vertices. For example 𝑏3 with {𝑑1,𝑑2} is different than 𝑏3 with {𝑑1,𝑑3}. The indoor vertices 𝑑𝑖s encode

their geographical coordinates, i.e., longitude and latitude.

The outdoor vertices 𝑏𝑖 and 𝑏 𝑗 are connected using their selected indoor vertices 𝑑𝑘 ∈ 𝑏𝑖 and
𝑑𝑙 ∈ 𝑏 𝑗 , which are the entrances or the exits of the buildings. The status of a building 𝑏 𝑗 is a vector

of values, i.e., ®𝑠 = {𝑐, 𝑖, 𝑜, 𝑡}, that records the congestion 𝑐 (i.e., minimum, average and maximum

congestion) in 𝑏 𝑗 , the time spent indoors 𝑖 in 𝑏 𝑗 , the time spent outdoors 𝑜 to reach 𝑏 𝑗 , and the total

travel time 𝑡 (= 𝑖 + 𝑜 + 𝑖 ∗ 𝑐). Note that the status of 𝑏 𝑗 implements the concept of the edge 𝑏𝑖 .𝑑𝑘 to

𝑏 𝑗 .𝑑𝑙 with its weight in search graph 𝐺 ′ described above.

The status vector is computed by the CalcStatus function, which is shown in Algorithm 1.

CalcStatus accepts as inputs a pair of indoor vertices 𝑖𝑛 and 𝑜𝑢𝑡 , and the current total travel

time since start time. If 𝑖𝑛 and 𝑜𝑢𝑡 are in the same building (lines 2- 5), the indoor travel time 𝑖

is calculated by using the function Distance that retrieves the shortest indoor path 𝑖𝑛-𝑜𝑢𝑡 from

Anyplace [30, 54] and the average walking speed [6, 25]. PredictCongestion is invoked to calculate
the percentage of congestion 𝑐 using the CM-Structure described in Section 3. The total time 𝑡 for

the pair of vertices is the sum of the indoor time plus the delay due to congestion. The delay due to

the congestion is calculated as 𝑖𝑛𝑑𝑜𝑜𝑟 𝑡𝑖𝑚𝑒 ∗ 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 [2] (line 11). That is, if 𝑖𝑛 and 𝑜𝑢𝑡 are in

the same building, then it returns the status ®𝑠 = {𝑐, 𝑖, 0, 𝑡} (line 12). If the vertices 𝑖𝑛 and 𝑜𝑢𝑡 belong

to two different outdoor vertices (lines 6-10), then the path is outdoors and, therefore, the indoor

travel time and the congestion are set to 0, and 𝑡 = 𝑜 . That is, the return status ®𝑠 = {0, 0, 𝑜, 𝑡}.
The ASTRO algorithm pseudocode is shown in Algorithm 2. In step 1 the priority queue 𝑂𝑃𝐸𝑁

and the set of visited outdoor vertices 𝐶𝐿𝑂𝑆𝐸𝐷 are initialized. In the graph construction and path

finding step (Step 2 - lines 3-36), the source outdoor vertex 𝑠𝑡𝑎𝑟𝑡 is initialized and enqueued into

𝑂𝑃𝐸𝑁 .

While the 𝑂𝑃𝐸𝑁 is not empty, the top outdoor vertex in 𝑂𝑃𝐸𝑁 is dequeued into 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . If

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the same with the 𝑔𝑜𝑎𝑙 , the destination was reached and the path 𝑝 is reconstructed

using the ReconstructPath function (shown in the Algorithm 3) and terminates. If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is not

in the𝐶𝐿𝑂𝑆𝐸𝐷 set, then the algorithm checks all the indoor paths (e.g., pairs of indoor vertices) by

iterating over the indoor vertices in 𝑏 for all of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ’s neighbors in 𝐵 set (line 13).

During the iterations, the status ®𝑠1 to reach the next building 𝑏 and the status ®𝑠2 of the indoor
path in 𝑏 are computed using the CalcStatus function as described above (lines 16& 19). The status

®𝑠 of 𝑏 is the integration of ®𝑠1 and ®𝑠2, and is a component of the state of 𝑏 along with the partial

path (𝑝𝑃𝑎𝑡ℎ), exit door (𝑒𝑥𝑖𝑡 ), 𝑔𝑆𝑐𝑜𝑟𝑒 , 𝑓 𝑆𝑐𝑜𝑟𝑒 and the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 originating building (𝑐𝑎𝑚𝑒𝐹𝑟𝑜𝑚)(set

in lines 23-27).

A tentative 𝑔𝑆𝑐𝑜𝑟𝑒 is calculated using 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ’s 𝑔𝑆𝑐𝑜𝑟𝑒 and the total time 𝑡 of the previously

computed status 𝑠 (line 21). If the tentative 𝑔𝑆𝑐𝑜𝑟𝑒 is less than 𝑏’s 𝑔𝑆𝑐𝑜𝑟𝑒 and all the constraints 𝜃
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Algorithm 2 - ASTRO: Graph Integrator and Path Finder

Input: 𝑠𝑡𝑎𝑟𝑡 : source; 𝑔𝑜𝑎𝑙 : destination; 𝐵: outdoor vertices; 𝜃 : set of Constraints;
Output: Recommended path 𝑝;

⊲ Step 1: Initialization
1: 𝑂𝑃𝐸𝑁 ← ∅ ⊲ Create a priority queue

2: 𝐶𝐿𝑂𝑆𝐸𝐷 ← ∅ ⊲ Create an empty set of the visited nodes

⊲ Step 2: Graph construction and Path Finding
3: 𝑠𝑡𝑎𝑟𝑡 [𝑔𝑆𝑐𝑜𝑟𝑒] ← 0

4: 𝑠𝑡𝑎𝑟𝑡 [𝑓 𝑆𝑐𝑜𝑟𝑒] ← 𝑠𝑡𝑎𝑟𝑡 [𝑔𝑆𝑐𝑜𝑟𝑒] + ℎ(𝑏 [𝑒𝑥𝑖𝑡], 𝑔𝑜𝑎𝑙)
5: 𝑠𝑡𝑎𝑟𝑡 [𝑐𝑎𝑚𝑒𝑓 𝑟𝑜𝑚] ← ∅
6: Enqueue(𝑂𝑃𝐸𝑁, 𝑠𝑡𝑎𝑟𝑡 ) ⊲ The priority queue (𝑂𝑃𝐸𝑁 ) is based on 𝑓 𝑆𝑐𝑜𝑟𝑒

7: while 𝑂𝑃𝐸𝑁 not empty do
8: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 (𝑂𝑃𝐸𝑁 )
9: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑔𝑜𝑎𝑙 then
10: 𝑝 ← ReconstructPath(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) ⊲ Stop looping and return the path

11: end if
12: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∉ 𝐶𝐿𝑂𝑆𝐸𝐷 then
13: for all 𝑏 ∈ 𝐵 do ⊲ for each neighbor of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

14: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≠ 𝑏 and 𝑏 ∉ 𝐶𝐿𝑂𝑆𝐸𝐷 then ⊲ Find the entrance (in) and exit (out) of 𝑏

15: for all 𝑖𝑛 ∈ 𝑏 do
⊲ 𝑠1 is the status of the outdoor path

16: ®𝑠1← 𝐶𝑎𝑙𝑐𝑆𝑡𝑎𝑡𝑢𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑒𝑥𝑖𝑡], 𝑖𝑛, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑔𝑆𝑐𝑜𝑟𝑒])
17: for all 𝑜𝑢𝑡 ∈ 𝑏 do
18: if 𝑖𝑛 ≠ 𝑜𝑢𝑡 then ⊲ The entrance and exit should be different

19: ®𝑠2← 𝐶𝑎𝑙𝑐𝑆𝑡𝑎𝑡𝑢𝑠 (𝑖𝑛, 𝑜𝑢𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑔𝑆𝑐𝑜𝑟𝑒] + ®𝑠1[𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒])
20: ®𝑠 ← ®𝑠1 + ®𝑠2
21: 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔𝑆𝑐𝑜𝑟𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑔𝑆𝑐𝑜𝑟𝑒] + ®𝑠 [𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒]
22: if 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔𝑆𝑐𝑜𝑟𝑒 < 𝑏 [𝑔𝑆𝑐𝑜𝑟𝑒] and 𝑐ℎ𝑒𝑐𝑘𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝜃, ®𝑠) then
23: 𝑏 [𝑝𝑃𝑎𝑡ℎ] ← (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑒𝑥𝑖𝑡], 𝑖𝑛, 𝑜𝑢𝑡, ®𝑠)
24: 𝑏 [𝑒𝑥𝑖𝑡] ← 𝑜𝑢𝑡

25: 𝑏 [𝑔𝑆𝑐𝑜𝑟𝑒] ← 𝑡𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒_𝑔𝑆𝑐𝑜𝑟𝑒

26: 𝑏 [𝑓 𝑆𝑐𝑜𝑟𝑒] ← 𝑏 [𝑔𝑆𝑐𝑜𝑟𝑒] + ℎ(𝑏 [𝑒𝑥𝑖𝑡], 𝑔𝑜𝑎𝑙)
27: 𝑏 [𝑐𝑎𝑚𝑒𝑓 𝑟𝑜𝑚] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

⊲ If 𝑏 is already enqueued, replace it based on the 𝑏’s state

28: Enqueue(𝑂𝑃𝐸𝑁,𝑏)

29: end if
30: end if
31: end for
32: end for
33: end if
34: end for
35: end if
36: end while
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Algorithm 3 - Path Reconstruction Function used in Algorithm 2

Input: 𝑔𝑜𝑎𝑙 : outdoor vertex;
Output: Recommended path 𝑝;

1: function ReconstructPath(𝑔𝑜𝑎𝑙 )

2: 𝑝 ← ∅ ⊲ Create an empty list

3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑔𝑜𝑎𝑙 ⊲ Set the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node with the 𝑔𝑜𝑎𝑙 outdoor vertex

4: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≠ ∅ do
5: 𝑝 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∪ 𝑝
6: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑐𝑎𝑚𝑒𝐹𝑟𝑜𝑚]
7: end while
8: return 𝑝

9: end function

are satisfied then the 𝑓 𝑆𝑐𝑜𝑟𝑒 is calculated based on a heuristic function ℎ, and 𝑏 is enqueued in the

𝑂𝑃𝐸𝑁 priority queue. The 𝑂𝑃𝐸𝑁 priority queue prioritizes the nodes based on the 𝑓 𝑆𝑐𝑜𝑟𝑒 . In case

the node exists in the priority queue and its 𝑔𝑆𝑐𝑜𝑟𝑒 is greater than the node to be inserted then the

already enqueued node is replaced (line 28).

The ReconstructPath function shown inAlgorithm 3 creates the found path using the 𝑐𝑎𝑚𝑒𝐹𝑟𝑜𝑚

attributes and the 𝑝𝑃𝑎𝑡ℎ of each one of the nodes.

3 CONGESTION FORECASTING
The goal of congestion forecasting is to predict the future flow of congestion in a hallway or corridor

in a given building at a given time. ASTRO only requires the congestion density for each segment

of the building’s indoor path (e.g., hallways or corridors) to ensure that the congestion tolerance

constraint is satisfied. In this section we discuss the two components of the congestion forecasting

used by ASTRO (PredictCongestion() in Algorithm 1). First, we explain how the building grid

layout is constructed (Section 3.1) and then we introduce the methodology that we employ for

training and accessing the congestion models (Section 3.2).

3.1 Building Grid Layout
In order to improve the accuracy and efficiency of our congestion forecasting models, we divide

the building corridors into smaller segments and develop a Grid Layout algorithm. The benefit of

this approach is two-fold: (i) each segment can be trained and maintained separately which allows

us to massively parallelize the training process while forecasting at a fine-grained level; and (ii) it

improves efficiency at inference time since we only forecast the congestion at the cells of interest

and not for the entire building.

Given the floor plan in a structured format (e.g., GeoJSON), we develop a new Grid Layout
algorithm that overlays a uniform grid over the building and detects those cells that overlap with

corridors, doors, and rooms. The output is a partial grid, the Building Grid Layout, that contains
only the cells that represent corridor segments, i.e., only the cells we are interested in modeling.

The Grid Layout algorithm works as follows. First, the floor plan of the building is spatially indexed,

i.e., corridors (polygons), rooms (polygons), and door locations (points) are loaded into a spatial

index, specifically an R-tree. A uniform grid that covers the entire building is generated with a

configurable cell size 𝜙 . Next, the grid cells are loaded into a second R-tree. Finally, a join operation

between the floor plan components and the grid cells is performed using the previously constructed
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Fig. 4. Floor plan of the Sennot Square building at the University of Pittsburgh campus (left) converted to a
Building Grid Layout (right).

spatial indexes. Cells that overlap with any floor plan components, i.e., corridors, rooms, doors, are

annotated as such whereas all other cells are discarded.

The output is a set of annotated grid cells. Figure 4 illustrates an example of such an output. On

the left, the CS Department floor plan in the Sennot Square building at the University of Pittsburgh

is depicted. The corresponding generated grid layout is shown on the right. The grid’s boundary

is displayed in the background as a gray rectangle whereas the actual shape of the building is

shown as a thick purple line. Building doors are marked with black dots and cells that correspond

to corridor segments are colored. Other types of cells are omitted for brevity.

3.2 Congestion Prediction & Accessibility
Formally, we denote the congestion at a cell 𝑐 as a signal 𝑋𝑐 ∈ R𝑃 where 𝑃 is the number of

features for the cell. Let 𝑋
(𝑡 )
𝑐 be the congestion observed at cell 𝑐 at time step 𝑡 . The congestion

forecasting problem aims to learn a function ℎ(·) that maps 𝑇 ′ historical congestion signals to 𝑇

future congestion signals:

[𝑋 (𝑡−𝑇
′+1)

𝑐 , . . . , 𝑋
(𝑡 )
𝑐 ]

ℎ ( ·)
−−−→ [𝑋 (𝑡+1)𝑐 , . . . , 𝑋

(𝑡+𝑇 )
𝑐 ] (2)

3.2.1 Training Phase. After the grid layout has been constructed, the training phase begins. For

every corridor cell in the grid, a separate model is trained on the congestion data that correspond

to that cell. To model the temporal dependencies of the congestion we leverage Recurrent Neural
Networks (RNNs). For the multiple steps ahead forecasting, we employ the Sequence-to-Sequence
architecture [47]. Both the encoder and decoder are recurrent neural networks and as we show in

our experiments (Section 5) we tested models with both LSTM and GRU neuron units as well as

traditional fully-connected RNN neurons.

During training, we feed the historical congestion time series into the encoder and use its final

states to initialize the decoder. The decoder generates predictions given previous ground truth

observations. At testing time, ground truth observations are replaced by predictions generated

12



ASTRO: COVID-19 Contact Prediction and Avoidance TSAS-CT ’21, , 2021

Model Store

Segment Level

S

3

S

1

S

4

S

2

s

1

s

2

s

12

s

10

s

9

s

5

s

4

s

6

s

8

s

11

s

7

s

3

S

6

S

7

S

5

S

9

S

10

S

8

S

11

S

12

s

1

S

1

M
Learning

Doors Congestion Data Indoor segment Congestion Model

b
i

Building Level

h

b

h

s

Fig. 5. The CM-Structure provides the ASTRO algorithm with improved performance. One forecasting model
is created for each segment in the building based on its historical data.

by the model itself. The entire network is trained by maximizing the likelihood of generating the

target future time series using backpropagation through time.

3.2.2 Deployment and Inference Phase. As discussed earlier, at inference time the system has to

be able to quickly and efficiently load the models of interest, i.e., the models that overlap with

the indoor pathway, and make predictions. To this end, we construct a spatial index, namely CM-
Structure, that maps cells to forecasting models. The Congestion Forecasting component maintains

the CM-Structure, shown in Figure 5, which stores the forecasting model of each corridor cell and

provides a fast Access Path. This allows ASTRO to efficiently look up the models it requires while

searching for the optimal path to the destination.

The CM-Structure Construction Algorithm is executed in an offline phase where the historical

data are utilized to initialize and train a forecasting model for each corridor cell of the building

model. Each model is inserted into the CM-Structure for faster retrievals during the last step of

Algorithm 1. For example, the congestion data records of corridor cell 𝑐 inside building 𝑏𝑖 are used

to train a model. Then, the trained model is inserted into the CM-Structure and becomes available

to subsequent queries for any path 𝑃 that intersects cell 𝑐 .

3.2.3 Continuous Learning Phase. The dynamic nature of congestion can very often render the

deployed congestion forecasting models obsolete. As the congestion dynamics change, (e.g., the

class schedule updated leading to more (or less) scheduled traffic, or new cafeteria opened in the

building) models need to keep adjusting to those changes [15]. To achieve that, we propose an

offline periodic phase where existing congestion models are further trained on new congestion

data collected since the last time the model was fine-tuned.

3.3 Data Collection
Obtaining indoor congestion datasets can be done in a variety of ways. Perhaps the most common

way to collect indoor congestion data is through the analysis of Wi-Fi access point logs. In particular,

given the number of connected users to an access point, the signal strengths of the established

connections, and the range of an access point, the expected number of pedestrians at different

distance intervals can be computed. A more accurate method is through beacons. These devices

have a shorter range and can therefore localize a device indoors with higher accuracy. Lastly, a
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recent work processed video streams in real-time to count the number of pedestrians passing from

specific corridors. Unfortunately, such datasets are rarely released to the public and, therefore,

in the next section we propose a configurable method for generating realistic indoor congestion

datasets.

4 INDOOR CONGESTION DATA GENERATOR
We design and implement a synthetic data generator due to the limited availability of indoor

congestion data. If the synthetic data is generated for an existing building floor plan, we utilize

our developed Building Grid Layout algorithm. Otherwise, we first generate realistic building

floor plans before we generate the congestion of a building using parameters that we obtained

from real congestion scenarios. The generator contains two separate components, namely the

Building Modeling and the Congestion Generator, that can be executed independently of each other.

Sections 4.1 and 4.2 describe the internals of each component in detail, respectively.

4.1 Building Modeling
Constructing a realistic building model is a crucial prerequisite for the next step, i.e., the synthetic

congestion generator. The algorithm, which is an extension of Building Grid Layout, requires two
inputs: the location of the building’s doors and the grid cell size 𝜙 . For our experiments in Section 5

we set 𝜙 = 3 meters.

Step 1 (Grid Construction): Initially, the shape of the building is approximated using the

convex hull of the door locations. Note that an accurate representation of the building’s shape is

not required in order to generate a synthetic building model. The minimum bounding rectangle

(MBR) of the doors (or of the convex hull) is used as the initial boundary of the grid. Subsequently,

our algorithm generates the grid cells. The first cell is placed at the bottom left of the grid’s initial

boundary and cells are generated until the boundary is filled. The cells on the right and top edges

may extend over the boundary and hence we update the grid boundary to reflect this. Cells that do

not overlap with the building’s shape are considered irrelevant and thus discarded.

Step 2 (Corridor Construction): Subsequently, the algorithm proceeds to generate corridors

that connect all doors with each other. Our corridor generation algorithm has two objectives: (i) to

minimize the number of direction changes, i.e., corridors must switch from horizontal to vertical

orientation as few times as possible; and (ii) to reuse previous corridor segments whenever possible

as an architect would do in a real scenario. Satisfying both objectives leads to compact floor plans

that are not flooded with corridor cells.

Step 3 (Room Placement): Lastly, a number of rooms is randomly placed along the unused

cells of the grid and the corridors are extended to reach the doors of those rooms. The output is a

set of grid cells, each annotated as CORRIDOR, ROOM, or UNUSED.

Figure 6 shows two examples of generated building models in which doors are marked as black

dots, the grid’s initial boundary with a light gray rectangle, corridor and room cells with green

(dark gray in grayscale) and orange (light gray with texture in grayscale) squares, respectively.

Room doors are depicted with brown textured squares (dark gray with texture in grayscale). Cells

that remain unused after modeling are painted red (light gray in grayscale). Note that rooms are

assumed to only have one entrance and therefore can only be used either as a source or as a

destination, i.e., no path cuts through a room.

4.2 Congestion Generator
Our real world observations show that traffic inside academic buildings can be separated into two

main categories: scheduled and pass-through. This observation is also confirmed by the study in

[7]. Scheduled traffic is the traffic that follows a specific schedule, e.g., class schedule. This means
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Fig. 6. Generated building models for a building with 6 doors and 35 rooms (left) and a building with 5 doors and
14 rooms (right) using 𝜙 = 3 meters.

that slightly before and slightly after a class, a spike of traffic appears in the building. Pass-through

traffic is generated by people who enter the building in one door only to exit at another. Therefore,

we design and implement a congestion generator that accounts for these two categories of traffic.

To achieve this, congestion is generated in two phases. The first phase generates the pass-through

traffic (browsers) whereas the second phase generates the scheduled traffic (commuters). Both

phases require the building model as input as well as the date range of simulation. It is important to

note that the building input does not necessarily have to come from the synthetic building modeler

we introduced in the previous section. This means that the generator can simulate traffic for any

building given its model.

Phase 1 (Pass-through traffic): The rate of congestion generated by this type of traffic varies

depending on the time of day. For example, there is almost zero traffic during night time but a

lot of people will pass through the building during the day time. Hence, the generator receives

an additional input for this phase, namely the arrival rate of people at different times of the day.

For every time step, the generator will randomly sample the number of people that arrive at each

building door and for each person a destination exit door is selected. Then, assuming a constant

walking speed the trajectory of each person is simulated following the shortest path that is formed

using corridor cells. The congestion of each cell is updated accordingly. It is important to highlight

that, in this phase, the source and the destination of the simulated trajectories is always a building

entrance/exit and that a trajectory will never involve a room or a room door, i.e., a simulated

trajectory will never cut through a room.

Phase 2 (Scheduled traffic): Before beginning the scheduled traffic simulation we need to

have some sort of a schedule for every room in the building, i.e., the time classes start and end for

different days of the week as well as the audience size of each class. Hence, the generator receives

this schedule as an input for this phase. Obviously, a schedule does not exist for synthetic building

models so we will discuss the approach we employ to generate such schedules later on in this

section. Besides the schedule, the generator requires an additional set of parameters, i.e., arrival

rate of students before the class begins, departure rate after the class ends, and probability that a

student is absent from class.

We simulate the arrival of students as a Gaussian distribution with mean 𝜇𝑎 and standard

deviation 𝜎𝑎 that samples the number of minutes before the start time of the class the student enters

the building. Similarly, we simulate the departure of students from class as a Gaussian distribution

with mean 𝜇𝑑 and standard deviation 𝜎𝑑 that samples the number of minutes after the end time of

the class when the students leave the classroom. Lastly, we simulate the absence of a student from

class as a binomial distribution with 𝑝 = 𝛼 , An average walking speed 𝑣 is assumed.
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Fig. 7. Generated congestion for a corridor cell corresponding to Entrance 1 (top) and a corridor intersection
(bottom) of Wesley W. Posvar Hall at University of Pittsburgh.

All parameters, i.e., 𝜇𝑎, 𝜎𝑎, 𝜇𝑑 , 𝜎𝑑 , 𝛼, 𝑣 are user-defined. The scheduled traffic generator algorithm

iterates over every schedule item and generates the respective traffic. For every student in the class,

we first draw a sample from the absence distribution to decide if the student is attending the class. If

the student is attending, we additionally draw a sample from the arrival distribution to decide how

early that student is going to enter the building. An entrance door is selected uniformly at random

and the student’s trajectory to the respective room is generated using a constant speed of 𝑣 𝑚/𝑠 .
The congestion of the cells that intersect with the student’s path is updated accordingly. A similar

process is employed for the departure of students from the class. For every student that was present,

a departure time and an exit door are sampled and the student is routed while the congestion of

cells that intersect with the path is updated. In sum, for all arrival (departure) trajectories, the

source is a building entrance (or room door) and the destination is a room door (building exit). The

final output is the congestion time series of every corridor cell aggregated in 5-minute intervals.

Discussion: Although we discuss (and make use of) the proposed generator in the context of

academic buildings, the process can be generalized to almost any kind of building. The only hard

requirement is the floor plan of the building. All other parameters (𝜇𝑎, 𝜎𝑎, 𝜇𝑑 , 𝜎𝑑 , 𝛼, 𝑣) can be provided

by the user or estimated using other datasets, such as Wi-Fi access point connection logs. For

example, at USC, access point logs are analyzed to estimate and predict the congestion in buildings

during the pandemic in order to reduce the spread of the virus. The logs tend to show a spike in
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the number of connections a few minutes before the start of a class, and a drop in the number

of connected users right after a class finishes. These spikes and drops can be correlated with the

schedule in order to estimate the parameters 𝜇𝑎, 𝜎𝑎, 𝜇𝑑 , 𝜎𝑑 .

Schedule Generator: In the scenario that a schedule does not exist for a building, we propose

a simple method to generate one. Three input parameters are required: (i) the audience size

distribution which is assumed to be a Gaussian distribution with mean 𝜇𝑠 and standard deviation

𝜎𝑠 ; (ii) a set of event durations (class, no class) along with their respective probabilities which are

modeled as multinomial distribution; and (iii) the probability 𝑝𝑐 that an event is a class or not.

Optionally, the time of day when classes begin and end, e.g., from 7AM to 9PM, can be provided.

Starting at the time that the schedule is configured to begin, e.g., 7AM, we sample two pieces of

information, namely the duration of the next event 𝛿 and whether the next event is a class or not.

If the next event is a class, the size of the audience is also sampled.

Figure 7 plots the generated congestion of two corridor cells during the first week of April, 2019.

On the top, the congestion of a corridor cell at the building’s entrance is shown while on the bottom

the congestion of an intersection cell is shown. Both cells follow a realistic distribution in the sense

that during the night-time only a very small number of pedestrians is observed whereas the number

of pedestrians increases during the day and peaks around the beginning and ending of classes. As

expected, the congestion at the intersection is much higher than at the entrance. This happens

because pedestrians are very likely to walk by the intersection irrespective of the entrance or exit

they used.

5 EXPERIMENTAL EVALUATION
This section presents an experimental evaluation of our proposed methods. We start out with

the experimental methodology and setup, followed by three experiments. The first experiment

(Section 5.2) examines the influence of machine learning models described in Section 3. The second

experiment (Section 5.3) investigates the trade-offs of three CM-Structure implementations. Finally,

in the third experiment (Section 5.4), the performance of ASTRO is compared against three baseline

approaches with respect to the quality of recommendation and the cost of execution.

5.1 Experimental Setup
This section provides details regarding the algorithms, metrics, and datasets used for evaluating

the performance of the proposed approach.

Testbed: Our evaluation is carried out on a dedicated Windows 10 server. The server is featuring

12GB of RAM with 4 Cores (@ 2.90GHz), a 500 GB SSD and a 750 GB HDD. We implement all path

search algorithms using Scala 2.13 and the three machine learning models (FC-RNN, GRU, LSTM)

utilizing Keras with Tensorflow [1] on an NVIDIA GeForce RTX 3080 GPU.

Algorithms: The proposed ASTRO algorithm (see Algorithm 2) is compared with the following

approaches:

• Dijkstra: This is a modified and optimized version of Dijkstra using a priority queue and

early termination with additional constraints similar to ASTRO.
• ASTROG: This is a greedy variant of ASTRO where the indoor path is selected based on the

minimum indoor time instead of the overall time or the heuristic.

• CBFS (Closest Building First Search): This is an algorithm where the closest building is

always selected first.

Note that ASTRO is the core algorithm of the proposed solution in this paper, Algorithm 2.
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Fig. 8. Datasets for the buildings in the University of Pittsburgh campus (top left) and the University of
Cyprus campus (top right) and their average congestion for one day (bottom row). The green and red stars
represent the source and destination nodes used in the experimental evaluation, and the blue box the search
space for all algorithms.

Datasets:We utilize the following two datasets in our evaluation:

• PITT: A realistic dataset of the University of Pittsburgh campus. It consists of 9 buildings

with each building having 2 to 6 doors (3 on average) and up to 582 corridor cells (126 on

average). The average door-to-door corridor length is 69 meters.

• UCY: A realistic dataset of the University of Cyprus campus. It consists of 9 buildings with

each building having 2 to 7 doors (4 on average) and up to 396 corridor cells (106 on average).

The average door-to-door corridor length is 48.5 meters.

We used camera analysis [16] on a 2-hour session and extrapolated the congestion data using

the University of Pittsburgh Fall 2019 schedule. Then, for both PITT and UCY datasets, we generate

congestion data using the procedure we described in Section 4 using 𝜇𝑎 = 4, 𝜎𝑎 = 1, 𝜇𝑑 = 1, 𝜎𝑑 = 0.2

and a walking speed of 1.4𝑚/𝑠 [6, 25] for a period of 6 months. Figure 8 shows the map of the two

campuses and the average generated congestion density (number of people over corridor capacity)

of all buildings on July 19, 2019.

Metrics:We evaluate the performance of ASTRO using the following metrics:

• Outdoor exposure (O): measures the total outdoor exposure of the recommended path in

seconds.

• Indoor Time (I): measures the total indoor time of the generated path in seconds.

• Total Time (T): measures the total travel time of the path between the source and the

destination point in seconds.
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• Congestion Reduction (C): measures the indoor congestion of the generated path.

• Response Time: measures the execution time using the average of 100 consecutive runs in

milliseconds.

• Memory (M): measures the memory footprint of the ML model in kilobytes.

• Root Mean Squared Error (RMSE): measures the error of the model and is computed

using the formula 𝑅𝑀𝑆𝐸 (𝑋,𝑋 ) =
√︃

1

𝑁

∑𝑁
𝑖=1 (𝑋𝑖 − 𝑋𝑖 )2, where 𝑋 is the ground truth and 𝑋

the prediction.

• Mean Absolute Error (MAE): measures the error of the model and is computed using the

formula𝑀𝐴𝐸 (𝑋,𝑋 ) = 1

𝑁

∑𝑁
𝑖=1 |𝑋 − 𝑋 |.

• Query Throughput: measures the maximum number of queries that the system can sustain

within a second in Queries Per Second (QPS).

5.2 Experiment 1: Congestion Forecasting Evaluation
We conduct our experiments on two buildings of the PITT dataset, namelyWesley W. Posvar Hall
(posvar) and Barco Law Building (barco). 70% of the data is used for training, 10% for validation, and

the remainder 20% for testing. Additionally, we apply standard normalization as a pre-processing

step to prepare the datasets for training and we include the time of day as a feature. We compare

the performance of 3 time series regression models (seq-to-seq encoder-decoder architecture); (i) a

fully-connected RNN model (FC-RNN), (ii) a Gated Recurrent Unit RNN model (GRU), and (iii) a

Long-Short Term Memory RNN model (LSTM). All models were trained for 30 epochs using the

Adam optimizer and a learning rate of 5𝐸−3 with a decay rate of 0.1 every 200 steps and with a

batch size of 256. During training (and inference) we provide the last hour’s congestion in 5-minute

windows as input to the model and receive the next hour’s congestion as output, i.e., 12 time steps

as input, 12 time steps as output.

First, we train the models using posvar’s congestion data, which has the largest number of

grid cells to tune them in terms of the number of layers and units hyperparameters. Specifically,

we performed experiments using 1 hidden layer (with 16, 32, and 64 units) and 2 hidden layers

(with 16/16, 32/32, and 64/64 units). Figure 9 plots the results. On the horizontal axis we vary the

number of hidden layers and number of units combination and on the vertical axis we plot the

corresponding model’s MAE. We observe that the smallest error is achieved for all models when

they use 2 hidden layers with 64 units each. Hence, for the remainder of the experiments, all the

models were trained using 2 hidden layers with 64 units each.

Next, we investigate three different aspects of the tuned models: (i) their accuracy, (ii) their

memory footprint, and (iii) their inference time. It is crucial that our system adopts not only a model

that is very accurate but also one that does not require a lot of memory and incurs small inference

time since, in order to predict the congestion of a path, tens of models, i.e., models corresponding

to corridor cells that overlap with the path, may need to be invoked.

Figure 10 examines the accuracy of the tuned models. Specifically, the average𝑀𝐴𝐸 (left) and

𝑅𝑀𝑆𝐸 (right) metrics of all models (corresponding to grid cells) in each building is shown. We

observe that all models are able to achieve similar accuracy for both buildings. Therefore, all models

satisfy the requirement of high prediction accuracy and are suitable candidates for ASTRO.
Figure 11 (left) examines the memory footprint of the models. As expected, due to its larger

number of parameters, LSTM requires more memory, making it a less ideal model to adopt by our

proposed approach for the reasons explained earlier. FC-RNN, on the other hand, requires much

less memory while achieving almost identical accuracy to the other models. Therefore, in terms of

memory requirements, FC-RNN and GRU are better candidates for ASTRO.
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Fig. 9. Examining the effect of hidden layers and number of units on the accuracy of the congestion models for
Wesley W. Posvar Hall at University of Pittsburgh.
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Fig. 10. Examining the MAE (left) and RMSE (right) of the 3 ML models (2 hidden layers, 64 units each) for
Wesley W. Posvar Hall and Barco Law buildings at University of Pittsburgh.

Finally, Figure 11 (right) examines the inference time of the models. We observe that FC-RNN

incurs the smallest inference time of 40 milliseconds per cell, while GRU incurs 2.5x more time

than FC-RNN. This shows that only FC-RNN and LSTM satisfy the requirement of incurring small

inference time.

Furthermore, we investigate which corridor cells incur the greatest error. Figure 12 examines the

accuracy of every corridor cell in posvar, the largest building in the PITT dataset, in terms of𝑀𝐴𝐸.

This confirms our initial observations that all models perform similarly. It is also not surprising that

corridors leading only to rooms and not exit doors, incur the highest error. The reason behind this

is that, intuitively, congestion sporadically appears at those cells slightly before and exactly after

a class. This kind of corridors only facilitate "commuters" and, hence, have almost 0 congestion

most of the time which makes it very difficult for the model to predict how congestion is going to

change in the immediate future.
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Fig. 11. Examining the memory footprint (left) and inference time (right) of the 3 ML models (2 hidden layers, 64
units each).

Fig. 12. Examining the error of every corridor cell in a building in terms ofMAE for FC-RNN (left), LSTM (middle),
and GRU (right) for Wesley W. Posvar Hall at University of Pittsburgh.
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Fig. 13. Examining the performance of the Congestion Model Access Methods in terms of build time (left), retrieval
time (center), and memory footprint (right).

Summary: Taking all the above into consideration, we reach the conclusion that FC-RNN is the

most ideal model to be adopted by ASTRO. This is due to the fact that it manages to satisfy all three

requirements; (i) high accuracy; (ii) low memory footprint; and (iii) low inference time. Specifically,

it achieves comparable accuracy to the other 2 models while requiring up to 4x less memory and

incurring up to 2.5x less inference time.
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Fig. 14. Examining the indoor total time (left), the outdoor total time (center), and the total travel time (right) in
seconds for finding the longest path in the PITT and UCY datasets without any constraints.

5.3 Experiment 2: Congestion Model Access Method Evaluation
It is critical for our proposed algorithm to quickly identify and retrieve all models that intersect a

corridor segment. Hence, we run experiments for three different Access Method implementations;

(i) a Grid that stores models in a 2D array; (ii) a hashmap that maps cells to models; and (iii) an

R-tree that indexes the cells based on their spatial boundaries. Figure 13 (left) illustrates the time

required to load the models of posvar, and construct the respective Access Path structure. All three

structures incur relatively similar construction times. Figure 13 (center) examines the average time

it takes to retrieve all the models that intersect a corridor. R-tree incurs the highest retrieval time

whereas the other two structures incur comparable times. Lastly, Figure 13 (right) investigates the

memory footprint of the structures. As expected, the Grid is the most expensive since it allocates

space for all cells in the grid even though only a portion of them corresponds to corridors whereas

the other two only index corridor cells.

Summary: Although both Grid and Hashmap Access Methods satisfy ASTRO’s requirements, we

decide to adopt Hashmap since it is slightly faster and requires 33% less memory than Grid.

5.4 Experiment 3: ASTRO Performance Evaluation
In the third set of experiments, we evaluate the performance of our proposed ASTRO algorithm

against three baseline solutions using the datasets described in Section 5.1. We select source and

destination nodes that maximize the search space for all algorithms as shown in Figure 8. This

allows the algorithms to consider paths that span multiple buildings and satisfy the constraints

described in Section 2.1. We use Manhattan distance to better represent the pedestrian path and an

average walking speed of 1.4𝑚/𝑠 [6, 25].

5.4.1 Series 1: Absence of constraints. In the first set of experiments we focus solely on optimizing

the total travel time, i.e., setting the constraints to 𝐴 = 𝑓 𝑎𝑙𝑠𝑒 , 𝑂𝐸 = ∞, and 𝐶𝑇 = 1.0 (100%).

The algorithms do not take into account any constraints, but the delay caused by congestion is

considered in the calculation of the total travel time.

Dijkstra,ASTRO, andASTROG behave identically (returning identical paths) as shown in Figure 14.

All three incur 0 indoor time for PITT dataset with the path being totally outdoors, due to the

absence of the outdoor exposure limit constraint. Interestingly, all three incur the same indoor time

for UCY dataset (23 seconds) by finding a path through a building which forms a shortcut to the

destination. The total time of the path is 456 seconds for PITT and 670 seconds for UCY.

In contrast, CBFS spends more than 270 seconds indoors for PITT dataset and almost 90 seconds

for UCY dataset incurring 10% congestion. This happens because its strategy is to visit the closest

building first irrespective of the presence or absence of constraints, therefore increasing the total

travel time as shown in Figure 14 (right). The total time of the path provided by CBFS is 3x larger
than the path recommended by the other approaches.
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Fig. 15. Examining the response time (left) in milliseconds, the average congestion (center), and the maximum
congestion (right) in percentage for finding the longest path in the PITT and UCY datasets without any constraints.
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Fig. 16. Examining the indoor total time (left), the outdoor total time (center), and the total travel time (right)
in seconds for finding the longest path in the PITT and UCY datasets with outdoor exposure time limit of 300
seconds.
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Fig. 17. Examining the response time (left) in milliseconds, the average congestion (center), and the maximum
congestion (right) in percentage for finding the longest path in the PITT and UCY datasets with outdoor exposure
time limit of 300 seconds.

In Figure 15, we can easily observe that ASTRO, ASTROG, and CBFS perform the same with

ASTRO being slightly faster for PITT dataset. In contrast, Dijkstra incurs 100x and 10x more time

(for UCY and PITT datasets, respectively) in finding the optimal path compared to ASTRO. This
happens because Dijkstra’s search space is much larger especially in the UCY dataset where the

graph is very dense (i.e., the buildings are very close to each other). Dijkstra, ASTRO, ASTROG, and
CBFS report 0 average and maximum congestion. On the other hand, CBFS has an average indoor

congestion of approximately 10% and a maximum indoor congestion of 100%.

Dijkstra, and ASTRO algorithms are optimal. This means that both algorithms find the path

with minimum total travel time and at the same time satisfy all the constraints. However, ASTRO
outperforms Dijkstra by up to 13X in terms of execution time.

5.4.2 Series 2: Outdoor Exposure Constraint (300 seconds). In the second set of experiments we

focus on optimizing the total travel time while keeping the outdoor exposure time less than 300

seconds, i.e., setting the constraints to 𝐴 = 𝑓 𝑎𝑙𝑠𝑒 , 𝑂𝐸 = 300, and 𝐶𝑇 = 1.0 (100%).
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Fig. 18. Examining the indoor total time (left), the outdoor total time (center), and the total travel time (right)
in seconds for finding the longest path in the PITT and UCY datasets with outdoor exposure time limit of 300
seconds and 15% congestion tolerance limit.

 0.1

 1

 10

 100

 1000

 10000

UCY PITT

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Dijkstra
ASTRO

ASTROG
CBFS

 0.1

 1

 10

 100

 1000

UCY PITT

A
v
e

ra
g

e
 C

o
n

g
e

s
ti
o

n
 (

%
)

Dijkstra
ASTRO

ASTROG
CBFS

 0.1

 1

 10

 100

 1000

UCY PITT

M
a

x
im

u
m

 C
o

n
g

e
s
ti
o

n
 (

%
)

Dijkstra
ASTRO

ASTROG
CBFS

Fig. 19. Examining the response time (left) in milliseconds, the average congestion (center), and the maximum
congestion (right) in percentage for finding the longest path in the PITT and UCY datasets with outdoor exposure
time limit of 300 seconds and 15% congestion tolerance limit.

Figure 16 shows the effect of the 300-second outdoor exposure limit. Particularly, Dijkstra, incurs
8 seconds of indoor time for UCY and 38 seconds for PITT. ASTRO and ASTROG behave identically,

i.e., they recommend the exact same path which incurs approximately 25 and 38 seconds of indoor

time for UCY and PITT, respectively. CBFS, on the other hand, recommends the same paths as before

for both datasets. The total time for both datasets remains the same as in the previous experiment.

In Figure 17, we observe that the response time for all of the approaches is slightly decreased

in comparison to the previous experiment (shown in Figure 15). This happens because several

edges are pruned due to the outdoor exposure constraint. However, ASTRO, ASTROG, and Dijkstra
have the same average indoor congestion (7% for PITT and 0.3% for UCY). All three of them incur

35% maximum congestion for PITT and 16% for UCY. CBFS has the same average and maximum

congestion with the previous experiment shown in Figure 15 (right).

5.4.3 Series 3: Outdoor Exposure Constraint (300 seconds) & Congestion Tolerance Limit (15%). In
the third set of experiments we focus on optimizing the total travel time while keeping the outdoor

exposure time less than 300 seconds, and the congestion tolerance limit less than 15%, i.e., setting

the constraints to 𝐴 = 𝑓 𝑎𝑙𝑠𝑒 , 𝑂𝐸 = 300, and 𝐶𝑇 = 0.15 (15%).

Figure 18 shows the effect of 300 seconds outdoor exposure limit and 15% congestion tolerance

limit. Specifically, Dijkstra incurs approximately 9 seconds of indoor time for PITT and 12 seconds

for UCY. ASTRO and ASTROG behave identically recommending again the exact same path which

incurs approximately 9 seconds of indoor time for PITT and 29 seconds for UCY. Dijkstra, ASTRO
and ASTROG have the same total travel time of 670 seconds for UCY and 470 seconds for PITT (14

seconds overhead from the previous experiment). CBFS incurs 97 seconds and 124 seconds for UCY

and PITT datasets, respectively.

Figure 19 shows that the congestion constraint affects the response time because additional paths

are pruned. Particularly, Dijkstra’s response time drops to 6 milliseconds from 120 milliseconds for
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Fig. 20. Examining the throughput, in queries per second (QPS), without any constraints (left), with outdoor
exposure time limit of 300 seconds (center), and with outdoor exposure time limit of 300 seconds and 15% congestion
tolerance limit (right) for finding the longest path in the PITT and UCY datasets.
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Fig. 21. Examining the throughput with outdoor exposure time limit ranging from 100 to 500 seconds (left), and
with outdoor exposure time limit ranging from 100 to 500 seconds and congestion tolerance limit from 5% to 20%
(right) in queries per second (QPS) for finding the longest path in the PITT and UCY datasets.

UCY datset and to 4 milliseconds from 9 milliseconds for PITT dataset. Finally, the average indoor

congestion is decreased for all approaches. ASTRO, ASTROG, and Dijkstra have the same average

indoor congestion 2% for PITT dataset and 0.3% for UCY dataset. Their maximum congestion is 4%

and 1% for UCY and PITT datasets, respectively. CBFS reports 4% for PITT and 2% for UCY while

the maximum congestion is 11% and 14% for UCY and PITT datasets, respectively.

Summary: Even though both Dijkstra and ASTRO guarantee finding the optimal path in terms

of satisfying the constraints and minimizing the total travel time, ASTRO is approximately one

order of magnitude faster when constraints are imposed and two orders of magnitude faster when

they are not. ASTRO reduces the maximum congestion by one order of magnitude compared to

algorithms that are oblivious to congestion while maintaining comparable response time with the

greedy approaches.

5.4.4 Series 4: Practicality of our solution. In this set of experiments we are examining the practi-

cality of our solution by measuring the throughput for the longest path in PITT and UCY datasets.

Figure 20 shows the throughput in queries per second (QPS) without any constraints, with

outdoor exposure time limit of 300 seconds, and with outdoor exposure time limit of 300 seconds

and 15% congestion tolerance limit for finding the longest path in the PITT and UCY datasets.

ASTRO, ASTROG, and CBFS outperform Dijkstra by up to two orders of magnitude for UCY dataset

and up to one order of magnitude for PITT dataset. Particularly, Dijkstra incurs 58 QPS for UCY
dataset and 127 QPS for PITT dataset on average, ASTRO incurs 757 QPS for UCY dataset and 1757

QPS for PITT dataset on average, ASTROG incurs 835 QPS for UCY dataset and 1780 QPS for PITT
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dataset on average, and CBFS incurs 925 QPS for UCY dataset and 1253 QPS for PITT dataset on

average.

Figure 21 shows the throughput in queries per second (QPS) with outdoor exposure time limit

ranging from 100 to 500 seconds, and congestion tolerance limit from 5% to 20% for finding the

longest path in PITT and UCY datasets. ASTRO, ASTROG, and CBFS outperform Dijkstra by up to

2X on average for both experiments for the PITT dataset and up to one order of magnitude on

average for UCY dataset.

Summary: Even though both Dijkstra and ASTRO guarantee finding the optimal path in terms

of satisfying the constraints and minimizing the total travel time, ASTRO is up to two orders of

magnitude faster in most cases. This set of experiments shows that ASTRO’s high throughput

supports route navigation incorporating congestion updates in real time. In contrast, traditional

graph-based algorithms cannot cope with the requirements of modern navigation (e.g., Google

Maps) and MCAN systems (e.g., HealthDist [12, 39]). In this setting, an initial route is recommended

and then periodically refined to account for any traffic changes in real time.

6 RELATEDWORK
In this section, we present the background and related work in systems that can provide outdoor,

indoor, or combined navigation and path recommendation. We also include the related work for

the traffic prediction for completeness.

6.1 Outdoor Path Recommendation
Outdoor systems are well established and enhanced through a variety of data collection and

processing techniques, e.g., OpenStreetMap, Google Maps, Bing Maps, Here WeGo, TomTom, Waze.

Several systems integrate social network data or crowdsourcing data and produce enriched path

recommendation using machine learning and providing alternative navigation services using

immersive technologies [8]. For example, Dejavu is a path navigation system that utilizes cell-

phone sensors to provide accurate and energy-efficient outdoor localization [5]. Gervey et al.

demonstrate how an alternative outdoor path can be generated based on the safety of a route [20].

On the other hand, there are systems that are trying to provide the fastest and simplest route for

a destination [44]. Mata et al. show how social network data from a user profile may affect the

outdoor path recommendation [37] and enrich it using augmented reality navigation [36]. Other

systems focus on the temporal or personal preferences of the user to discover outdoor activities [41].

6.2 Indoor Path Recommendation
With people spending the 90% of their time indoors [54], indoor navigation services optimized the

shortest path search using magnetic fields for localization and a modified shortest path formula-

tion [51]. An indoor environment has many elements with unique properties that are defining the

indoor route [45]. Additionally, marking the indoor environment (e.g., braille blocks) can assist the

visual impaired people to navigate indoors [43].

Smart home and wireless sensor networks provide the opportunity to localize and navigate

indoors with spatial awareness [27]. Indoor localization and navigation services have emerged due

to the rapid growth of new large buildings (e.g., shopping centers, campuses, building complexes).

Anyplace is an infrastructure-free indoor navigation system that uses sensing data from smart-

phones to determine the user’s location [54]. Delail et al. proposed a context-aware system that

enriches the indoor information by using augmented reality to provide indoor navigation [13].

Indoor environment and context are very important for determining the best indoor navigation

route, especially to impaired people [18, 31]. Park et al. propose an indoor pedestrian network data

model for emergency transportation services [40]. Afyouni et al. illustrate how to process indoor
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continuous path queries over traditional databasemanagement systems using a hierarchical, context-

aware data model [3]. Feng et al. propose keyword-aware indoor path recommendation [17]. Lastly,

Liu et al. propose the temporal variations-aware indoor path planning that takes the operating

hours of shops into consideration [34]. However, none of the previous works consider dynamic

edge weights such as the congestion which is of critical importance during a pandemic.

6.3 Indoor-Outdoor Path Recommendation
The majority of the indoor-outdoor systems focus on the seamless transition between indoor

and outdoor navigation [35, 46]. Additionally, IODetector detects the indoor-outdoor environment

changes accurately and efficiently, allowing the development of context-aware mobile applica-

tions [32]. IONavi is a joint indoor-outdoor navigation solution that uses mobile crowdsensing

to create a collection of indoor-outdoor paths. Then, produces an indoor-outdoor path based on

the generated collection [49]. Similarly, CrowdNavi solves the last-mile navigation problem using

crowdsourcing and the guider-follower model [50]. Jensen et al. presented a unified model of indoor

and outdoor spaces that can provide the shortest path by exploiting the nature of buildings and

roads [24]. CAPRIO [9–11] is the latest indoor-outdoor path planning system that supports shortest

path recommendations. CAPRIO users can specify outdoor exposure tolerance similar to ASTRO.
However, these solutions are multi-objective path recommendation systems that cannot cope with

multiple constraints and do not operate over time-varying graphs.

6.4 Constraint-based Path Selection
Previous work on constraint-based path selection was mostly focused on QoS routing and their

task is to find feasible paths while providing some guarantees. In [26] the authors propose a

multi-constrained optimal path (MCOP) selection algorithm that can be applied to any number

of constraints. The authors of [28, 29] provide a complete overview of all the proposed solutions.

However, these solutions cannot be directly applied to ASTRO. These algorithms attempt to either

find any path that satisfies the constraints or the optimal path in terms of a nonlinear cost function

that involves the constraints over a single graph. Thus, their path finding approaches, which are

focused on QoS, cannot seamlessly integrate outdoor and indoor graphs to recommend routes for

pedestrians.

6.5 Congestion Forecasting & Predictive Path Planning
Congestion forecasting is a classic problem in intelligent transportation systems research where the

task is, given the current traffic situation, to forecast the future traffic situation. Traditionally, time-

series regression techniques such as ARIMA, VAR, and other have been applied in order to predict

the future situation of the traffic. Recently, more advanced techniques that involve complex and

deep neural networks have been studied and are now considered state-of-the-art [33]. Additionally,

some traffic prediction solutions, besides road monitoring data, also incorporate online information

about events and weather conditions in order to achieve higher accuracy [56]. However, our work

focuses in indoor foot traffic congestion, a task that is entirely different in the sense that conditions

can change very fast; from little congestion in one minute, to high congestion in the next minute,

and back to little congestion. Furthermore, in the transportation domain, the task is to forecast the

congestion at a specific road segment (or sensor) which is strictly uni-directional whereas corridors

are bidirectional (people can walk in opposite directions at the same time at the same corridor).

Considering only the current traffic and assuming that it remains constant thereafter leads

to suboptimal results due to the highly dynamic nature of indoor congestion. Therefore, it is

imperative that predictive path planning [14] is employed in order to discover the best possible
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path that satisfies the constraints by predicting how congested a corridor will be when the person

arrives there.

7 CONCLUSIONS AND FUTUREWORK
In this paper we present ASTRO, a novel graph-based path discovering algorithm that reduces

the risk of COVID-19 exposure and enables Mobile Contact Avoidance Navigation (MCAN). ASTRO
algorithm integrates outdoor nodes (i.e., buildings) with indoor nodes (e.g., doors, stairs, escalators,

elevators) to efficiently provide a personalized contact avoidance path satisfying a user-specified

set of constraints (i.e., accessibility requirements, congestion tolerance, arrival time, and outdoor

exposure). ASTRO uses a two-level data structure, dubbed CM-Structure, which allows the algorithm

to quickly retrieve the congestion models that are relevant to a corridor to forecast the congestion

at a given point in time. A second contribution of this paper is an experimental platform for indoor

congestion generation to support congestion forecasting in indoor spaces. We have developed this

platform as part of ASTRO’s evaluation to address the lack of readily available indoor congestion

data to train ML models. Our experimental results show that ASTRO can reduce the risk of COVID-

19 exposure by up to one order of magnitude while maintaining similar response time compared to

algorithms that are oblivious to congestion.

Beyond MCAN, ASTRO can be used as a core component in the development of evacuation

algorithms [48] and group recommendations where multiple requests arrived/submitted need to be

considered together. In the future, we plan to incorporateASTRO and CM-Structure inHealthDist [12,
39], our first MCAN prototype system. HealthDist can provide accessibility information about

individuals for more accurate walking speed, which can be used by ASTRO to enhance prediction

accuracy.We also aim to enhance the congestionmodeling process to further improve the forecasting

accuracy and efficiency of the models by exploring new machine learning models that exploit

state and real-time information from crowdsourcing and sensing devices. Lastly, we also plan to

investigate novel path scheduling solutions at the system level to prevent congestion hot-spots

using participatory services.
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