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Abstract

In this paper we present an algorithm for finding the k highest-ranked (or Top-k)
answers in a distributed network. A Top-K query returns the subset of most relevant
answers, in place of all answers, for two reasons: i) to minimize the cost metric that
is associated with the retrieval of all answers; and ii) to improve the recall and the
precision of the answer-set, such that the user is not overwhelmed with irrelevant
results. Our study focuses on multi-hop distributed networks in which the data is
accessible by traversing a network of nodes. Such a setting captures very well the
computation framework of emerging Sensor Networks, Peer-to-Peer Networks and
Vehicular Networks. We present the Threshold Join Algorithm (TJA), an efficient
algorithm that utilizes a non-uniform threshold on the queried attribute in order to
minimize the transfer of data when a query is executed. Additionally, TJA resolves
queries in the network rather than in a centralized fashion which further minimizes
the consumption of bandwidth and delay. We performed an extensive experimental
evaluation of our algorithm using a real testbed of 75 workstations along with a
trace-driven experimental methodology. Our results indicate that TJA requires an
order of magnitude less communication than the state-of-the-art, scales well with
respect to the parameter k and the network topology.

Key words: Distributed Top-K Query Processing, P2P Networks, Sensor Networks

Preprint submitted to Computer Networks 19 January 2009



1 Introduction

The widespread deployment of networked computing devices and the emerging
ubiquitous computing paradigm have brought a shift from traditional central-
ized computing infrastructures to interconnected networks of peers, sensors
and vehicles. In such networks, nodes connect to a small non-uniform number
of other nodes which in effect creates an overlay communication graph that is
utilized for data sharing and query processing.

A typical characteristic of such networks is that nodes maintain or generate
large amounts of data. For instance, a typical sensor device can sample envi-
ronmental parameters, such as pressure, humidity and temperature at rates
ranging from 2Hz to 500Hz [34]. Thus, the task of querying a collection of
sensors is confronted with the fundamental challenge in distributed query pro-
cessing: ”how to find the expected answer without observing all the distributed
relations in their entirety”. Instead of retrieving all the answers we focus on
efficiently retrieving the k highest-ranked (or Top-k) answers and minimize at
the same time the cost of evaluating the query.

In this paper we present the Threshold Join Algorithm (TJA), which is an
efficient Top-k query processing algorithm for distributed environments. An
example of a Top-k query might be: “Find the three moments on which we
had the highest average temperature in the last month across all sensors de-
ployed on a mountainside.” The objective of a Top-k query is to find the k
highest ranked answers to a user defined similarity function. Our algorithm is
designed for queries where the user is interested in having the k most relevant
answers sporadically, rather than continuously. For example, biologists analyz-
ing a forest [39] are usually interested in long-term monitoring that will allow
them to understand changes and conditions over long periods of time. There-
fore various sensors can record environmental readings from their surrounding
environment to local storage, and then selectively transmit their tuples to a
query processing node (the sink), when certain preconditions are met, or when
the sensors receive a query over the radio [41].

Since the execution of a query in a distributed environment is typically asso-
ciated with the transfer of data over an expensive wireless or wired commu-
nication medium, TJA’s objective is to minimize this burden by transferring
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Fig. 1. Distributed Top-k query processing in the context of a Content

Distribution Network: Given a set of n servers (cluster nodes), each recording
locally the number of hits per page si (i ≤ m), we are interested in finding the
k pages with the highest number of hits across all n servers. The objective is to
complete this task without pulling together all the distributed logs.

fewer readings to the sink and to execute in a fixed number of round trips.
The former parameter is important because the minimization of the network
utilization also reduces processing and energy consumption. The latter param-
eter on the other hand, is important because executing an algorithm in a fixed
number of phase minimizes expensive round-trips over an expensive commu-
nication medium. Additionally, TJA resolves queries in the network rather
than in a centralized fashion and that further minimizes the consumption of
bandwidth and delay.

Distributed Top-k query processing is useful in an ever growing number of
other domains, such as Content Distribution Networks, Internet Traffic Mon-
itoring, Information Retrieval and Spam Detection Networks. Below, we de-
scribe their applicability in more detail for some of these settings:

Example 1 - Content Distribution Networks: Let S = {s1, s2, ..., sm}
denote the m pages of a popular web site S (see Figure 1). For scalability
and fault tolerance reasons, the m pages are replicated over a set of n servers
(each server maintains on local disk the m web pages). Whenever a webpage
si (i ≤ m) is accessed by some user, the redirector (router) forwards the user
to one of the n servers. Let each server nj (j ≤ n) record these visits in a local
log. In many occasions the system administrators are interested in queries
that refer to the complete set of distributed servers, such as: “find the page
with the highest number of hits across all servers”. An answer to such a query
would enable Administrators to reorganize the linkage structure of S in such
a way that the most popular pages become available with the fewer number
of user clicks. It is important to note that the router does not perform any
application-layer handling of incoming TCP traffic. Thus, the router cannot
simply count the incoming traffic of each server in order to define the answer
to the above query.
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Fig. 2. Distributed Top-k query processing in the context of Internet Traf-

fic Monitoring: The illustration on the left presents two monitors (squares) that
ping a number of landmarks (dots). The collected data is utilized to infer topological
properties about the Internet. A Top-k query is to find the k landmarks (regions)
with the highest score in some specified metric (loss, delay, etc). The figure on the
right depicts the bipartite graph abstraction of this scenario.

Obviously, such a query can only be answered if the user first fetches all the
distributed logs to a centralized repository and then combines these relations
using some traditional centralized Top-k query processing algorithm [14,15].
This is fairly expensive as the number of web-servers and the number of web-
pages might be very large. The techniques proposed in this paper alleviate
this burden by transferring only the tuples that are most likely to be in the
final result.

Example 2 - Internet Traffic Monitoring: In Internet Tomography [10],
researchers infer topological properties about the Internet through indirect
measurements. In this context, Content Distribution Networks, such as Aka-
mai [1], and research organizations, such as NLANR [18], continually measure
distances, such as latency or loss, from a very large number of monitors to
a large set of representative landmarks, such as well chosen DNS servers. An
illustration of this scenario is depicted in Figure 2. Such measurements allow
scientists to understand traffic patterns, predict failures, map the structure the
of the Internet on an ongoing basis and many others. Infrastructure operators
and researchers are often confronted with queries that refer to all monitors,
such as: “find the region that has the highest distance (e.g., loss, latency) from
all monitors in the last 15 minutes”. To answer such queries, somebody must
gather the pings from all monitors for the specified window of time. This is an
endeavor task as the number of monitors and landmarks is usually very large.

The techniques discussed in this paper minimize the transfer of data, and
thus the total time to find the expected answers. Our techniques addition-
ally minimize computation, which leads to significant conservation of energy.
This is particularly important when dealing with battery-powered wireless
sensor devices [39–41]. Our techniques increase the available energy budget of
a device, which can in effect be utilized for increasing the sampling frequency
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and hence the fidelity of the measurements in reproducing the actual physical
phenomena, or for just prolonging the lifetime of a device.

This paper builds upon our previous work in [40], in which we presented the
design and initial results of the Threshold Join Algorithm (TJA) in a sensor
network environment. In this paper we introduce several new improvements
which are summarized as following:

• We present a study of the TJA algorithm using a real middleware system
we developed on a network of 75 workstations. We additionally conduct
the following studies: i) We compare the TJA algorithm to another three-
phase algorithm, the TPUT [8] algorithm, and show that our algorithm
has superior performance because it utilizes a non-uniform threshold rather
than a uniform threshold; ii) We empirically assess the scalability of the
parameter k which signifies the number of expected results to a query; and
iii) We probe our algorithm on network topologies of different diameters.
Our study provides solid experimental evidence about the performance and
scalability characteristics of the TJA algorithm in a real system deployment;

• We provide a formal and detailed correctness proof of the Threshold Join
Algorithm and its internal structures showing that it yields a correct answer
in every instance;

• We provide an extensive overview of related work and a taxonomy of re-
lated algorithms based on four different dimensions: number of phases, input
scores (exact, approximate), output ranking (exact, approximate) and query
type (on-demand, continuous).

2 Problem Definition and Outline of Operation

In this section we will formalize our basic terminology upon which we will
build the description of our algorithm. We will then outline the motivation
behind the phases of the Threshold Join Algorithm.

2.1 Problem Definition

Let R be a relation with n attributes {s1, s2, . . . , sn}, each featuring m ob-
jects {o1, o2, . . . , om}. The jth attribute of the ith object is denoted as oij (see
Table 1). Also let G(V, E) denote an undirected network graph that inter-
connects the n vertices in V using the edge set E. The edges in E, represent
the connections between the vertices in V (the set of nodes). We assume that
each vertex is connected to only d (d << n) other vertices (i.e., the average
degree of the graph is d). For ease of exposition, assume that each node si
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is mapped to the elements of the vertex set V = {v1, v2, . . . , vn} using a 1:1
mapping function f : si → vi, ∀i. This assumption defines that each node only
maintains local information (i.e., a single dimension in the n-dim space).

Consider Q = (q1, q2, . . . , qn), a Top-k query with n attributes. Each attribute
of Q refers to the corresponding attribute of an object and the query aims to
find the k objects with the maximum value in the following scoring function:

Score(oi) =
n∑

j=1

sim(qj , oij) (1)

where sim(qj , oij), is a similarity function that evaluates the jth attribute of
the query Q against the jth attribute of an object oi and returns a value in the
domain R+ (a higher value denotes a higher similarity). Similarly to [13,7],
we require that the scoring function is monotone. A function is monotone if
sim(qj , o1j)>sim(qj , o2j) (∀j∈n) then Score(o1)>Score(o2).

For example, assume a collection of temporal climate objects from three sen-
sors s1, s2 and s3 at two time moments o1:(s1=100F , s2=90F , s3=80F ) and
o2:(s1= 100F , s2=70F , s3=80F ). Furthermore, assume that the distance func-
tion sim(qj , oij) represents a fraction of the maximum value on dimension
j. Given that some function max calculates the highest temperature in a
given dimension, the top-1 object to the query Q= (max(temp), max(temp),
max(temp)), would be o1 because Score(o1)=3.0 (i.e., 1*1.0 + 1*1.0 + 1*1.0)
and Score(o2)= 2.77 (i.e., 1*1.0 + 1*0.77 + 1*1.0).

2.2 Systems Parameters

As we mentioned earlier, a Top-K query returns the subset of most relevant
answers to the query according to a cost metric. Since such a cost metric can
come in different forms, depending on the host environment, in this work we
define it based on the number of Network Bytes (i.e., the sum of Bytes of all
nodes that reply to the Top-K query) and the number of Network Messages
utilized to compute a Top-k answer (i.e., the sum of messages of all nodes that
reply to the query). The difference between these two parameters originates
from the fact that in networking protocols messages might have variable length
sizes. Consequently, a single large message in one protocol might be equivalent,
in terms of Bytes, to many smaller-sized packets of another protocol.

An additional parameter for evaluating the efficiency of a Top-k query pro-
cessing algorithm is with regards to the Completion Time, which is defined
as the interval between the receipt of the query’s end-of-transmission message
by a target node, and the query response’s end-of-transmission message re-
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Table 1
The local scores of five objects o1..o5 which are located at nodes v1..v5. The last
column displays the overall rank which is computed as the sum of scores.

v1 v2 v3 v4 v5 TOP-5

oid,val oid,val oid,val oid,val oid,val oid,val

o3, .99 o1, .91 o1, .92 o3, .74 o3, .67 o3, 4.05

o1, .66 o3, .90 o3, .75 o1, .56 o4, .67 o1, 3.63

o0, .63 o0, .61 o4, .70 o2, .56 o1, .58 o4, 2.07

o2, .48 o4, .07 o2, .16 o0, .28 o2, .54 o0, 1.88

o4, .44 o2, .01 o0, .01 o4, .19 o0, .35 o2, 1.75

ceived by the host node that issued the query. This parameter is particularly
important in online systems that need to have access to the query answer in
an online manner.

Note that the above parameters are not sufficient to quantify the intrinsic
characteristics of distributed environments. In cases where the network suffers
from failures, it is also required to study the Average Error, that is, the error of
the acquired answer-set from the correct results. Studying such a parameter is
important as many messages might fail to be delivered to the querying node,
thus leading to an erroneous answer. The objective of a distributed Top-k
algorithm is to keep the error parameter as small as possible.

Section 5, will present an assessment of these parameters on the algorithms
we describe in this paper.

2.3 Outline of Operation

We shall next outline the motivation behind the three phases of the Threshold
Join Algorithm described in this paper. For ease of exposition, we will use an
example network of five nodes (v1..v5), where each node maintains locally the
scores of five objects (o0..o4). The score values for each node are presented
on Table 1. We shall also utilize an example query that seeks to identify the
object (i.e., K=1) that maximizes the sum of local scores across all nodes (in
the given example that would be o3 with score 4, 05).

A Querying Node (QN), also referred to as Sink in this work, can easily com-
pute an answer to the top-1 query by first transferring all oij pairs to itself,
then perform a local join, and finally extracting the desired results. The mes-
sage complexity of this approach is clearly Θ(m ·n). Assuming that each node
transmits its local scores to QN either directly or over a multi-hop network,
this approach would require

∑n
i=0 δ(vi) ∗m messages, where δ(vi) is the depth

of node vi from QN. Obviously this algorithm, denoted as the Centralized Join
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Algorithm (CJA), is extremely expensive in practice (this will be validated in
experimental section 5).

However when intermediate nodes perform some local aggregation similarly
to [26], then this cost can be reduced to Θ(n) which is essentially one message
per edge (let this be denoted as the Staged Join Algorithm (SJA)). Note that
in this scenario, each node packs in a single message exactly m tuples (val-
ues) similarly to the TAG [26] in-network aggregation mechanism deployed
in the TinyDB [27] database system for Wireless Sensor Networks. An im-
portant problem is that in our environment the query window value m might
be arbitrary large, which therefore constitutes this approach as an expensive
alternative.

The Threshold Join Algorithm studied in this paper is an efficient Top-k query
processing algorithm for distributed environments. TJA decreases the number
of objects that are required to be transmitted from each node, by using a
probing and filtering phase before proceeding with the retrieval of the final
answer-set. Recall that each node vi essentially maintains a list of scores which
is denoted as list(vi). In addition, the algorithm seeks to optimize the use of
the network resources by pushing computation into the network.

More specifically, the algorithm consists of three phases:

(1) The Lower Bound phase, in which the querying node finds a lower bound
on the lists by probing the nodes in the network;

(2) The Hierarchical Joining phase, in which each node uses the lower bound
for eliminating the objects that are below this bound and join the quali-
fying objects with results coming from children nodes; and

(3) The Clean-Up phase, which is invoked if k objects could not be computed
exactly in the previous phases.

2.4 Our Contribution

In this paper we consider an in-network processing technique for efficient Top-
k query evaluation in distributed computing networks. The key idea of our
work is to transmit only the necessary objects towards the querying node and
to perform the score calculation procedure in the network rather than in a
centralized way. This imposes many problems and challenges, as the attributes
are located on different nodes in the network, which are not directly accessible.
More specifically:

• We study the feasibility and applicability of Top-k queries in distributed
settings;
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• We propose the TJA algorithm, which is a novel algorithm to resolve Top-k
queries in a hierarchical environment using a fixed number of phases. Our
algorithm deploys in-network query processing in order to reduce network
traffic, conserve energy and increase application performance.

• We perform a large-scale evaluation using a real testbed of 75 worksta-
tions along with a variety of real and realistic datasets. For this purpose
we have implemented a middleware system over which we evaluate various
algorithms and design choices. Our results demonstrate the efficiency of the
TJA algorithm under a diverse number of settings.

3 The Threshold Join Algorithm (TJA)

In this section we will describe in detail TJA, an efficient algorithm that uti-
lizes a non-uniform threshold on the queried attribute in order to minimize the
transfer of data when a query is executed. Additionally, TJA resolves queries
in the network rather than in a centralized fashion which further minimizes
the consumption of bandwidth and delay. It is important to notice that the
TJA algorithm is not a technique for performing general-purpose database
joins in a distributed setting but it rather only utilizes this operator in its
execution.

Without loss of generality, we assume that the query is disseminated to the
nodes in the network prior to the execution of the algorithm. For ease of
exposition, we shall supplement the description with an example execution
that utilizes the values of Table 1.

3.1 Description of Algorithm

The three phases of the algorithm are presented below:

Lower Bound (LB) Phase

This phase identifies a set of objects that are used to construct a threshold.
The Top-k results are guaranteed to have a score above this threshold.

The phase works by having each node vi sort in descending similarity order
the elements in its local list (i.e., list(vi)). vi then extracts from this list the
identifiers of the k local highest-ranked objects (we denote this new set as
listk(vi)). If vi is a leaf node, then it transmits listk(vi) to its parent node. A
parent node is a node which provides a path to the querying node QN. If vi is
a non-leaf node, then it waits until it receives listk(vj) from all of its children
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vj , at which point it performs a union of all collected lists. This procedure
creates the following partial lower bound L(vi):

L(vi) = listk(vi)
⋃

(
⋃

∀j∈children(vi)

listk(vj))

L(vi) is then propagated to the parent of vi and when this recursive operation
terminates, the querying node will receive a list of object identifiers that define
the complete lower bound LqueryNode=Ltotal={l1, l2, . . . , lo}, o ≥ k.

Consider our working example of Table 1 (which is for convenience also sum-
marized in Figure 3d). Assume that the querying node is v0, and that it issues
the top-1 query: “Find the time moment with the highest average tempera-
ture.”. We note that it is easy to express such a query in our framework, by
setting sim(qj , oij) equal to the normalized temperature of node i at time j
(this is equivalent to asking for the time moment with a vector closest to
(1,..,1)).

In Figure 3a, we illustrate the Query Spanning Tree (QST) of the LB phase.
Each node sends its top value: list1(vi) for the vertices v1, v2, v3, v4, v5 is o3,
o1, o1, o3 and o3 respectively. Consequently, the lower bound in our working
example is Ltotal={o1, o3}. The figure shows how each intermediate node vi

calculates the partial lower bound L(vi). For example at node v4, we perform
the following union L(v4) = {o3 ∪ o3}, therefore v4 is only required to propa-
gate o3 to v2 rather than all the pairs in its local list.

Hierarchical Join (HJ) Phase

In the second phase the querying node propagates Ltotal to all nodes in the
network. Each node then uses Ltotal for eliminating the objects that are below
this bound.

Specifically, the sink starts out by disseminating Ltotal to all nodes in the
network using the same hierarchy created in the LB phase. This has a message
complexity of Θ(n), where n is the number of nodes in the network. Each node
receiving Ltotal, searches its local sorted list(vi) in order to identify the index
of the lowest ranked object that belongs to Ltotal.

More precisely, a procedure FindMinRank locates the lowest ranked object
that belongs to Ltotal. All objects above idx are candidates for the result.

In the next step, each node uses the locally generated idx in order to extract
all tuples above idx from its sorted list(vi). Let listidx(vi) denote the set of oij

pairs generated by this procedure. If a node is a leaf node, it simply forwards
listidx(vi) towards its parent. Otherwise, a node waits until it receives all
listidx(vj) from all of its children vj , at which point it performs a full outer
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Fig. 3. The Query Spanning Tree for the three phases of the TJA Algorithm: 1)
Lower Bound (LB), 2) Hierarchical Join (HJ) and 3) Clean-Up (CL) Phase. The
table shows the objects qualifying in each phase.

1: procedure findMinRank(Ltotal, list(vi))
2: idx = −1
3: for j = 1 to |Ltotal| do
4: pos = rank(Ltotal[j], list(vi))
5: if (idx < pos) then
6: idx = pos
7: end if
8: end for
9: return idx

10: end procedure

join using the FullOuterJoin procedure illustrated next. We note that in a full
outer join of two relations A and B, in addition to the rows that join on the
objectID, the rows of both A and B without a match also appear in the result.
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However, the rows that do not match in both A and B, are marked with a
incomplete flag. Below we present how FullOuterJoin (

⊎
) works:

R(vi) = listidx(vi)
⊎

(
⊎

∀j∈children(vi)

listidx(vj))

The above procedure creates a local partial result R(vi). During this compu-
tation the algorithm computes a partial score for each object oj in R(vi). If
object oj appears in the result list of vi and in the result list of all its children
this partial score can be computed exactly using the above function. If on the
other hand, oj does not appear in all of the lists (and so it is marked as in-
complete by the FullOuterJoin procedure), the algorithm computes an upper
bound estimation on the score.

In particular, if object ol does not appear in the result list of some node vi, we
compute an upper bound on the partial score of ol by substituting sim(qi, oil)
with mina∈listidx(vi)[sim(qi, a)]. Note that mina∈listidx(vi)[sim(qi, a)] represents
the maximum possible value that sim(qi, oil) might have. In other words, all
values in the table list(vi) below mina∈listidx(vi)[ sim(qi, a)] are smaller than
sim(qi, oil)). This is attributed to the fact that list(vi) is sorted in descending
similarity order.

To understand the above description consider node v4 in Figure 3 (HJ Phase).
Also assume that node v5 has just completed the transmission of its three
objects to v4 (i.e., o3, o4 and o1). Both o3 and o1 are directly joined with the
values of v4 yielding thus an exact score for each object. On the other hand,
object o4 does now not appear in listidx(v4). Consequently, v4 substitutes o4

with the maximum possible value that this object might get in list(v4), which
is equal to .56 (i.e., the value of o1).

Before forwarding the complete and incomplete result list, vi marks those score
computations that are upper bounds using an extra bit to differentiate them
from the exact partial scores. vi then forwards R(vi) to its parent and when
this recursive operation terminates, the querying node will receive a superset
of the final Top-k result RqueryNode=Rtotal={r1, r2, . . . , ro}, o ≥ k.

In our working example the superset result is Rtotal = {(o1, 3.63), (o3, 4.05),
(o′4, 3.54)} and the querying node just extracts the highest rank answer o3

which is the result with the highest score. In Figure 3b, we illustrate the QST
for the HJ phase of our working example. The figure shows how each inter-
mediate node vi calculates the partial result R(vi). At node v4, the full outer
join of listidx(v4) = {(o3, .74), (o1, .56)} and listidx(v5) = {(o3, .67), (o4, .67),
(o1, .58)} generates the following partial result R(v4) = {(o3, 1.41), (o1, 1.14),
(o′4, 1.23)}, where the result of o4 is marked as an upper bound while the oth-
ers are exact results.
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Clean-Up (CL) Phase

In the last phase of the algorithm the querying node has collected a list of
objects for which either the complete score or an upper bound of its score
has been computed (incomplete score). If k objects have been found with an
exact score above the largest incomplete object, then the algorithm can safely
terminate and return those objects as the answer.

On the other hand, if less than k exact scores were computed or if some of
the incomplete scores is higher than the exact scores, then QN has to request
the exact scores for the remaining incomplete objects that are above the kth
exact score. This is achieved by sending a clean-up message to all nodes in
the system. The clean-up message contains the list of objects incompletely
computed (denoted as R′). Each node receiving the request uses the function
objectsR′(vi), in order to locate the objects in R’ which were not shipped to
the sink. Each node waits, as before, for the clean-up results that might arrive
from its children nodes, before proceeding to the full score calculation. This
is achieved by using the below function:

C(vi) = objectsR′(vi) 1 ( 1
∀j∈children(vi)

objectsR′(vj))

When the querying node receives Ctotal, it computes the final top-k answers.
This is achieved by joining Ctotal with Rtotal, where Rtotal is the partial result
generated in the HJ phase.

In our example the querying node has calculated an upper bound of 3.54 for
o4, which is less than the score of o3 (i.e., 4.05), and so the querying node does
not have to execute the CL phase. In the experimental results of Section 5,
we can observe that the TJA algorithm completes in two phases for the most
of the cases and that the CL phase is rarely necessary.

3.2 TJA Correctness

We shall now prove the correctness of the TJA algorithm and show that it
generates the desired answer in every instance. In particular, we need to prove
that the TJA algorithm does not miss any object in the final top-k results
irregardless of the input values.

Before proceeding to the correctness proof of TJA, let us show that the Upper-
Bound Mechanism, utilized in the second (HJ) phase of the algorithm, is cor-
rect.
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Upper-Bound Mechanism: This mechanism is invoked in the second (HJ)
phase of the TJA algorithm, in response to a Top-k query Q = {q1, . . . , qn},
and works as follows: For any object ol that does not appear in the listidxvi

of some node vi substitute sim(qi, oil) with mina∈listidx(vi)[sim(qi, a)]. Clearly,
mina∈listidx(vi)[sim(qi, a)] is always larger or equal than sim(qi, oil), as list(vi)
(∀vi ∈ V ) is sorted in descending similarity order and because object ol is
below position idx in list(vi) (∀vi ∈ V ).

Lemma 1: Invoking the Upper-Bound Mechanism in the TJA algorithm
yields a correct Top-k answer-set.

Proof: To prove this lemma, let us consider the final answer-set returned in
response to Q, denoted as Result. Our analysis shows that Result comprises
of the following two cases:

(1) Case 1: Result contains k+δ (0 ≤ δ ≤ m−k) objects with “exact” scores
(let this subset be defined as K) and every object in K has a larger score
than the rest |Result − K| objects with “incomplete” (bounded above)
scores.

For this case, the Upper-Bound mechanism is correct as every “incom-
plete” object o′i in the (Result−K) set, has already its maximum possible
score and the score o′i is by definition of this case smaller than the scores
of objects in K. Consequently, the TJA algorithm can correctly termi-
nate in the second (HJ) phase without missing any correct results, as the
score of every o′i will be smaller than those objects returned as an answer
to Q.

(2) Case 2: Result contains k − δ (0 < δ ≤ k) objects with “exact” scores
(let this subset be defined again as K) and the rest |Result−K| objects
with “incomplete” (bounded above) scores might have any value (i.e.,
larger, smaller or even equal to the values in K).

For this case, the Upper-Bound mechanism is again correct as the score
of every “incomplete” object o′i in the (Result−K) set will be determined
exactly by the third (CL) phase of the TJA algorithm. Consequently, the
final step of the algorithm is to identify the k highest scores in a list of
|Result| exact scores which is straightforward. �

We shall next prove that the TJA algorithm, which utilizes the Upper Bound
mechanism, is correct in every instance.

Lemma 2: The TJA algorithm returns the k answers with the highest score
to a given query Q in its three phases.

Proof (direct): Let Q = {q1, . . . , qn} denote a Top-k query resolved with
the TJA algorithm, r1 an arbitrary object not returned in response to Q (i.e.,
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r1 ∈ Results) and r2 an arbitrary object that is not returned in response to Q
(i.e., r2 /∈ Result). We want to show that Score(r2) < Score(r1) always holds.

First note that Score(r1) is defined exactly either during the second (HJ)
phase or the third (CL) phase of the TJA algorithm using the upper-bound
mechanism that was proven before. In any case, the minimum possible value of
Score(r1) is equal to the summation of minimum values in the individual listidx

sets of each node (formally, that would be equivalent to
∑n

i=1 mina∈listidx(vi)

[sim(qi, a)], denoted as τ for convenience). On the other hand, the maximum
possible value of Score(r2) is at most τ − ǫ, where ǫ ∈ R and ǫ > 0, since
r2 /∈ Results (this would be the first element below the minimum value in
the local listidx of each node). Otherwise, r2 would have been included in the
HJ phase of the TJA execution (and cleared in the CL phase if necessary). If
that was the case though, this object would have been handled by the Upper
Bound mechanism. Consequently, it holds that Score(r2) < τ and it directly
follows that Score(r2) < Score(r1) as Score(r1) ≥ τ �

4 Experimental Evaluation Methodology

In this Section we describe our experimental framework and the datasets that
we utilized in our evaluation. We focus on the efficiency, that is, the number
of transmitted Bytes, the number of Messages and required Time to obtain
the final result. In all cases, the presented algorithms return exactly the same
result with what is returned by evaluating the query over a centralized collec-
tion of lists. In cases where the network suffers from failures, we also study the
Average Error of the algorithms, that is, the error of the acquired answer-set
from the correct results. Detailed definitions of these parameters were given
in Section 2.2.

4.1 Description of Algorithms

In order to make a meaningful assessment of the TJA algorithm, we have
implemented and tested a number of algorithms with a real middleware system
that we developed in JAVA and deployed over a network of 75 workstations.

We chose as a baseline the results we obtained by three other algorithms that
operate over exact scores, produce exact results and require a fixed number of
phases. In particular, we have implement: i) The Centralized Join Algorithm
(CJA), where each node transmits its local scores to the querying node QN;
ii) The Staged Join Algorithm (SJA), where each intermediate node performs
local aggregation on the intermediate results in order to minimize messag-
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ing and response time and iii) The Three-Phase Uniform Threshold (TPUT),
proposed by Cao and Wang in [8], that was the first fixed-round algorithm
designed for single-hop networks.

TPUT uses, similarly to our approach, a three phase protocol in order to re-
solve Top-k queries in distributed networks. The algorithm starts out by con-
structing a uniform bound across all lists. In our working example of Table 1,
this bound would be constructed by fetching the first row from each node.
The Querying Node (QN) then constructs the partial aggregate scores for the
two objects seen so far: o1 = .91 + .92 = 1.83 and o3 = .99 + .67 + .74 = 2.4.
These scores are partial, because they do not take into account the score from
every node in the system. In the second phase, QN uses these partial scores
to define a uniform threshold as τ = ((Kth lowest partial score)/n), where
n is the number of nodes in the system. This score, which in our working
example is equal to τ = 240/5 = .48, is then disseminated to all nodes in
the network. Each node then transmits to QN all objects with scores above
τ , in particular, v1, v2, v3, v4 and v5 transmit every object with score above
o2 = .48, o0 = .61, o4 = .70, o2 = .56 and o2 = .54 respectively (i.e., an upward
projection). The final phase of the algorithm is only invoked if k objects could
not be computed exactly.

The disadvantage of TPUT over our TJA algorithm, is that the threshold τ
is uniform for all nodes and this results in excessive messaging as we will see
in the experiments that follow this next.

4.2 Experimental Infrastructure

This section describes our middleware system that allows us to study Top-k
and other data retrieval algorithms in large-scale P2P systems. Our system
runs on a network of 75 workstations (each hosting a number of nodes). Each
workstation has an AMD Athlon 800MHz-1.4GHz processor with memories
varying from 256MB-1GB RAM, running Mandrake Linux 8.0 (kernel 2.4.3-
20) all interconnected with a 100MB LAN. Our middleware is written entirely
in Java and comes along with an extensive set of UNIX shell scripts that allow
the easy deployment and administration of the system.

Our middleware consists of three components: (i) graphGen which generates
random network topologies and configuration files for the various nodes par-
ticipating in a given experiment, (ii) topkPeer which is a P2P client that
implements a binary data protocol of the algorithms we discuss in this paper,
and (iii) searchPeer which is a P2P client that performs queries and harvests
answers back from a deployed network. We use random graphs with uniform
degree distributions instead of power-law topologies because in our setting
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nodes have equal capabilities. A network of 1000 nodes can be launched in
approximately 20 seconds.

Data Transfer Protocol: We have implemented a binary data protocol,
as opposed to using a text-based protocol, which makes the transmission of
messages and data lists highly efficient. In our configuration each message has
a 23 bytes header, which includes the unique identifier of the message, the
payload size (i.e., how many objects are packed in the message), as well as
other implementation specific parameters. Each element in list(vi) (i.e., an
oij pair), requires 8 byte (oid=4 bytes, val=4 bytes) and these pairs are con-
secutively packed after the message header. Each topkPeer vi maintains open
TCP socket connections with its neighbors so there is no need to establish a
new connection every time vi wants to send a message to one of its neighbors.
This saves our nodes from the three-way TCP handshake and other overheads
associated with the connection establishment procedure. Notice that by keep-
ing the TCP sockets open in our setting is just an additional improvement
to our middleware system and not a prerequisite for the correctness of our
algorithm. In fact, all implemented Top-k algorithms would equally benefit
from this improvement.

Finally, in our setting several peer nodes were running on the same workstation
and all processes were assigned low priorities because we used instructional
lab workstations. Therefore the presented time results are pessimistic bounds
on what can be achieved in a dedicated environment.

4.3 Description of Datasets

Our experiments are based on the following two datasets:

1) NetMon - Server Infrastructure: This is a synthetic dataset that sim-
ulates the 1GB main memory system of 1000 workstations on which users
schedule various processes. In this dataset the local memory utilization at
consecutive time moments features a similar behavior. We did not measure
the actual memory utilization of the machine on which each node was run-
ning, because in our setting several nodes were running on the same worksta-
tion. Therefore the memory utilization of each machine was always at near
maximum utilization.

Additionally, we assume that the workstations are located at different geo-
graphic locations, similarly to the PlanetLab testbed [9], and that monitoring
the workstations using a centralized setting becomes very expensive. Therefore
we use a Peer-to-Peer architecture in which nodes can communicate only with
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Fig. 4. Temperature (top) and Wind-Speed (Bottom) timeseries for two data logging
stations in Port Angeles (WA) and Hillsboro (OR).

a few other close-by nodes (e.g., using their longitude/latitude coordinates).

2) AtmoMon - Atmospheric Data: This is a real dataset of atmospheric
data collected at 32 sites in the Washington and Oregon states, by the De-
partment of Atmospheric Sciences at the University of Washington. 1 More
specifically, each of the 32 sites maintains the average temperature and wind-
speed on an hourly basis for 208 days between June 2003 and June 2004 (i.e.,
4990 time moments). Figure 4 shows two timeseries from two different logging
stations. The figures indicate that in the temperature timeseries, consecutive
time moments are correlated (feature a self-similar pattern). However, the
wind-speed timeseries fluctuates and that distorts the performance benefits of
Top-k query processing algorithm as we will show in the experimental section.

5 Experimental Evaluation

In this section we describe a series of experiments to investigate the efficiency
of the TJA algorithm compared to CJA, SJA and TPUT. In each subsection

1 http://www-k12.atmos.washington.edu/k12/grayskies/
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Table 2
Configuration parameters for the instances of our experimental evaluation.

Section Objective Dataset m k n d

5.1 TJA vs. (CJA, SJA) NetMon 2,5K-10K 3 1,000 10

5.2 TJA vs. (CJA, SJA) NetMon 10,000 1-300 1,000 10

5.3 TJA vs. (CJA, SJA) NetMon 10,000 3 1,000 4-10

5.4 TJA vs. (CJA, SJA) AtmoMon 4,990 3 1,000 4

5.5 TJA vs. (CJA, SJA) AtmoMon 4,990 3 32 4

5.6.1 TJA vs. TPUT NetMon 25,000 5 25-100 5

5.6.2 TJA vs. TPUT AtmoMon 4,990 3 32 4

we study the impact of different values for the variables m, k and d, which are
the parameters for the query window size, the number of expected results and
bushiness of network topology respectively. The first class of experiments aims
to present the advantages of a three-phase algorithm (i.e., TJA) compared
to the other one-phase algorithms (i.e., CJA and SJA). The second class of
experiments only focuses on comparing the three-phase algorithms (i.e., TJA
vs. TPUT).

For the first class of experiments we present the following: In subsections 5.1-
5.3 we present the first series of experiments which is based on the NetMon
dataset. The query is to find the k moments in the last m minutes, in which
the n servers (each with a degree d) had the highest average memory utiliza-
tion in total. In subsection 5.4-5.5, we present the second experimental series
which evaluates the same parameters on the AtmoMon dataset. The query for
this series was to find the three moments on which the average temperature
among all monitors was maximum. We also study the impact of failures on the
performance of the algorithm we propose. For the second class of experiments
we present in subsection 5.6 the third experimental series which compares
the TJA algorithm to the TPUT algorithm using the NetMon and AtmoMon
datasets.

Table 2 summarizes the configuration parameters for the subsequent sections.
In our experiments, all measurements are averages over 10 consecutive runs.

5.1 Performance Comparison of One-Phase vs. Three-Phase Algorithms

In the first experimental series we investigate the performance of the TJA
algorithm compared to the other one phase algorithms discussed in this paper
(i.e., CJA and SJA). We define performance using three criterions: 1) Bytes
used in order to send the results, 2) Time waited before the Top-k results
become available at the querying node and 3) Messages consumed. Our query
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Fig. 5. Performance Evaluation: Comparing TJA vs. two one-phase counterparts
(CJA and SJA) using 1000 NetMon nodes with average degree d=10. The graphs
illustrate the: a) Bytes consumed (top,left), b) Messages transmitted (top,right) and
c) Query completion Time (bottom). The figures show that the number of bytes
and the total time to receive back the answers is significantly decreased with TJA.

in the first experiment is to find the top-3 moments in the last 2.5K, 5K,
7.5K and 10K moments at which the infrastructure had the highest average
memory utilization in total.

Bytes: In Figure 5 (top,left), we plot the number of bytes required for the
different windows of time. As we can see with 2.5K objects, CJA consumes
two orders of magnitudes more network bytes than the TJA algorithm and one
order of magnitude more bytes for the rest cases. Another drawback of CJA
is that even after the querying node receives all oij pairs, it requires several
seconds before it can join the 1000 lists and calculate the final result. Finally,
the figure also indicates that TJA always outperforms the SJA algorithm. Note
that when the parameter m increases, the TJA algorithm gets much coarser
bounds in the LB phase and that decreases the performance gap between TJA
and SJA. Yet, the performance of the TJA algorithm is still superior than both
SJA and CJA for any m size in the range 2,500 to 10,000.

Messages: In Figure 5 (top,right), we plot the total number of messages, in-
cluding the initial brute-force search, required by each algorithm. Note that
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a message in our setting has a variable size 2 . Therefore the total number of
messages presented in the case of TJA, is a mixture of smaller and larger
sized messages. The graph indicates that TJA requires approximately 2000
messages more than SJA. This was expected as in the absence of the CL
phase, TJA requires only one additional round-trip which costs only 2.(n− 1)
messages. However since each peer maintains open socket connections with its
neighbors, the additional round-trips can be conducted by circumventing the
three-way TCP handshake and the other overheads associated with the con-
nection establishment procedure. Our results show that although TJA uses
many smaller size messages the overall number of bytes is significantly de-
creased. Next we present the advantage of the TJA algorithm with regards to
the overall querying time.

Time: In Figure 5 (bottom), we plot the time required by the different al-
gorithms. As we can see TJA always outperforms the other two one-phase
alternatives, even though it uses three phases. This happens because TJA’s
HJ phase is much smaller than the monolithic and time consuming one phase
presented in the rest algorithms. Note that TJA’s other two phases (LB and
CL) are in practice very short. For example for 5K objects, the LB phase
required 10 sec; the HJ phase 22 sec and the CL phase 0 sec. Therefore this
was much lower than the 48 seconds required by the SJA algorithm and 621
seconds required by CJA.

5.2 Scalability with Respect to k

In the second experiment, we evaluated the efficiency of the TJA Algorithm
with respect to the parameter k. More specifically, we increase the parameter
k while keeping the number of objects constant at m=10, 000. We omit the
time and messages graphs since both parameters used 60ms and 20K messages
respectively for all runs.

Figure 6 (left) indicates that TJA works well even when the parameter k
reaches the 3% of the number of objects. More specifically, with k = 300 TJA
requires 79MB, which is still better than what SJA requires (i.e., 80.4MB).
When the parameter k reaches the 5% of the number of objects at each node,
SJA outperforms TJA as it again requires 80.4MB while TJA requires 84MB
for its three phases. Therefore when the parameter k is very large it might
be cheaper to gather all results at the querying node rather than using TJA.
Finally note that CJA and SJA require a constant amount of bytes for any
parameter of k as both algorithms transfer a priori all lists to the querying
node.

2 A message has a 23 bytes header and up-to 232 oij pairs (8 bytes each).
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5.3 Increasing the Query Tree Hierarchy

In the third experiment we vary the average degree d of the nodes while keep-
ing constant the rest parameters. Since the number of nodes in the network
remains constant and the degree increases, the network becomes more bushy
(densely connected) and the diameter of the graph decreases. More specifically
the diameter has the values 9, 6, 6 and 5 for degrees 4, 6, 8 and 10 respectively.

Figure 6 (right) indicates that CJA requires as much as 648MB when d = 4
while SJA and TJA require 80.4MB and 77MB respectively. This was expected
as the cost in CJA is a function of the depth of the tree which is significantly
larger for smaller degree parameters. The figure also indicates that TJA is
similarly favored by larger d parameters as more aggregation is achieved at
intermediate nodes. For example when d = 4 the cost is 77MB, while with
d = 10 the cost reduces to 69MB. Finally, since SJA requires to transmit for
any spanning tree m ∗ n oij pairs its performance is independent of d.

5.4 Experimentation with Real Data

In this section we present our results using real data from the AtmoMon
dataset (presented in section 4.3). Our query is to find the three hours (mo-
ments), on which the average temperature among all monitors was maximum.
We set the degree parameter to d = 4 in order to create an adequately deep
(but connected) network of diameter=6.

In Figure 7 (top,left with failure threshold f=0) 3 , we plot the number of
required bytes for the three algorithms when there are no failures in the net-
work. The figure indicates that TJA requires an order of magnitude less bytes

3 The rest f values will be discussed in the next subsection.
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Fig. 7. Performance Evaluation under Failures: a) Bytes and b) Time, c)
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0.3).

than SJA for calculating the results. Figure 7 (top,right with f=0), displays
the respective time for the three algorithms. As we can see TJA calculates the
Top-k result in only 3,797 ms (LB=1,059ms, HJ=2,730ms and CL=8ms) while
SJA requires 8,224 ms and CJA 18,666 ms. Finally in Figure 7 (bottom,left
with f=0), we plot the number of messages. The figure indicates again that
TJA requires more messages than SJA. More specifically TJA requires 246
messages while CJA requires 259 messages and SJA 183 messages. However
it is again important to mention that most of the messages used by TJA are
small in size.

We have also experimented with the AtmoMon wind-speed dataset. Our re-
sults reveal that TJA has not a big advantage over its competitor SJA. More
specifically, TJA requires 1.23MB while SJA requires 1.27MB before the top
3 results become available. After analyzing the timeseries of various nodes we
observed that the wind-speed values do not have a correlated behavior between
consecutive moments. For example in Figure 4, we plotted the values generated
at two atmospheric data logging stations in Port Angeles, WA, USA and Hills-
boro, OR, USA. We observe that the temperature presents some correlated
behavior between consecutive moments while the wind-speed fluctuates. The
uncorrelated behavior of the wind-speed, makes the TJA algorithm to obtain
a much coarser lower bound in the LB-phase which results in the transmission
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Washington and Oregon, USA.

of large lists during the HJ phase.

5.5 Experimentation under Failures

Node failures and abnormal disconnections generate a dynamic environment
in which nodes are leaving and joining the network in an ad-hoc manner. This
does not allow the querying node to obtain the correct Top-k results. Therefore
we define the Average Error function Φ, that measures the error in the rank
of the obtained results compared to the real Top-k results.

Formally Φ is defined as:

Φ =
1

k
∗

k∑

i=0

penalty(oi) (2)

where penalty(oi) is equal to realrank(oi)−rank(oi) if realrank(oi) > rank(oi)
or zero otherwise (higher score denotes higher rank). Note that realrank(oi)
is obtained by running a Top-k algorithm locally while rank(oi) is obtained
from the results coming from the network. In order to simulate failures in our
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stable environment, we randomly and uniformly disconnect nodes from the
network and join them back after some fixed interval. At any given moment
the percentage of disconnected nodes is no more than a given threshold f .

For this experimental series we utilize an AtmoMon network and show the
number of bytes, the required time and the number of messages utilized by
each of the described techniques when the failure factor is set to 10%, 20%
and 30% respectively. The plots in Figure 7 indicate that in all techniques
the number of bytes and messages decreases linearly with increasing failures
because more nodes tend to loose their parents.

On the other hand the required time to execute a query under failures increases
for SJA and TJA. This happens because each node vi has a timer τvi

=τmax ∗
ttl(vi), where τmax is a given threshold and ttl(vi) the time-to-live parameter
taken from the query when it arrives at vi. This decreases the waiting period
of nodes deeper in the QST hierarchy. Nodes in CJA on the other hand do
not use any timer as messages might arrive from an arbitrary large number of
nodes (not just the children) and therefore the waiting time remains fixed.

In 7 (bottom,right) we plot the Φ parameter for the different failure thresh-
olds. The figure shows that TJA always achieves excellent resilience Φ < 1.
This means that the rank of each result is on average less than one position
wrong. On the other hand CJA and SJA have a larger Φ value because they
take longer to complete and therefore miss more results. Our results suggest
that TJA is tolerant to failures which might an important attribute in net-
works with high error rates (such as sensor networks).

5.6 Performance Comparison of Three-Phase Algorithms: TJA vs. TPUT

In the final experiment we study the performance of the TJA algorithm against
the TPUT algorithm presented in Section 4.1. Recall that the TPUT algorithm
uses, similarly to our approach, a three phase protocol in order to resolve
Top-k queries in distributed environments. The TPUT algorithm starts out
by constructing a uniform bound across all lists. It then computes a uniform
threshold τ and fetches all objects above this bound. The disadvantage of
TPUT over TJA is that the threshold τ is uniform for all nodes rather than
non-uniform. This results in the unnecessary transfer of many objects that are
not in the final top-k result.

We will present two different experiments for this series: i) comparison under
the NetMon dataset and ii) comparison under the AtmoMon dataset.
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Fig. 9. Performance comparison of TJA vs. TPUT using the NetMon dataset

5.6.1 NetMon Dataset

This subsection presents the performance characteristics of the TJA and TPUT
algorithms when these algorithms are executed over a NetMon dataset that
consists of 25,000 objects. Our query is to find the top-5 answers for varying
number of nodes n {25,50,75 and 100}.

Bytes: Figure 9 (top-left), demonstrates that the TJA algorithm has an order
of magnitude better performance than TPUT (i.e., 152,709 Bytes vs. 11,755
Bytes). By carefully examining the execution we observe that this major per-
formance gap is attributed to deficiency of the uniform threshold established
in the second phase of the TPUT algorithm. In particular, in TPUT each node
goes much further down its own local score list than the TJA algorithm.

Messages: In Figure 9 (top-right), we present the number of application-layer
messages that these two algorithms require. The figure shows that the perfor-
mance of the given algorithms is very close in regards to this parameter. Note
that both of these algorithms are 3-phase algorithms, consequently, both of
them require approximately the same number of application-layer messages
to complete the query. On the contrary, the number of messages at the lower
layers of the communication stack (e.g., TCP/IP packets), are much larger
for TPUT and that has already been justified in the Bytes graphs in Figure 9
(top-left). We speculate that the slight performance difference of the given
algorithms with respect to the messages parameter is attributed to random

26



 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

Temperature Wind-Speed

N
um

be
r 

of
 b

yt
es

 in
 K

B
 (

lo
g 

sc
al

e)

Dataset Used

Bytes used for each Algorithm

TPUT

TJA

 0

 50

 100

 150

 200

 250

 300

Temperature Wind-Speed

M
es

sa
ge

s 
(lo

g 
sc

al
e)

Dataset Used

Messages used for each Algorithm 
 Variable Message Size [23 bytes- 232*8 bytes] 

TPUT

TJA

 0

 2000

 4000

 6000

 8000

 10000

 12000

Temperature Wind-Speed

T
im

e 
in

 M
ill

is
ec

on
ds

 (
lo

g 
sc

al
e)

Dataset Used

Time used for each Algorithm

TPUT

TJA

Fig. 10. Performance comparison of TJA vs. TPUT using the AtmoMon dataset

failures and not to a specific advantage of the TJA algorithm over TPUT.

Time: Finally in Figure 9 (bottom), we present the amount of time required
by the two algorithms. The figure again shows that the TJA algorithm has
a significant advantage over TPUT with regards to this parameter (i.e., on
average 89 sec. vs. 125 sec). This is again attributed to the fact that the TJA
algorithm transmits considerably less bytes than the TPUT algorithm during
its second phase. Consequently, in TJA the user will be able to retrieve the
answer back much faster than in TPUT (e.g., for n=100 the difference is as
big as 58 seconds).

5.6.2 AtmoMon Dataset

This subsection presents the performance characteristics of the TJA and TPUT
algorithms when these are executed over the AtmoMon temperature dataset
and the AtmoMon wind-speed dataset. Both of these datasets consist of m=4990
objects distributed over n=32 nodes. Our query is to find the top-3 answers.

Bytes: Figure 10 (top-left), demonstrates that the TJA algorithm has again
an order of magnitude better performance than TPUT for the temperature
dataset (i.e., TPUT requires 2,212KB while TJA only 355KB). On the other
hand, the performance under the wind-speed dataset is reversed (i.e., TPUT
consumes 1,151KB while TJA consumes 1,414KB). As mentioned earlier, the
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temperature dataset presents some correlated behavior between consecutive
moments while the wind-speed dataset fluctuates. The uncorrelated behavior
of the wind-speed, provides an advantage to the TPUT algorithm which pro-
ceeds with the retrieval of the largest part of each node’s local list in its second
phase. On the other hand, the TJA algorithm obtains a much coarser lower
bound in LB-phase which results in the retrieval of many additional values
during the HJ and CL phases.

Messages: In Figure 10 (top-right), we present the number of application-
layer messages that these two algorithms require. The figure shows that the
performance of the given algorithms is again very close in regards to this
parameter. Yet, the TJA algorithm proceeds with less objects than TPUT.

In particular, for the temperature dataset the TPUT algorithm requires 235
messages while the TJA algorithm requires only 231 messages. For the wind-
speed dataset the situation is reversed, with TPUT requiring 232 messages
and TJA 233 messages. We again speculate that the difference in the messages
parameter is attributed to random failures.

Time: Finally in Figure 10 (bottom), we present the amount of time required
by the two algorithms. The figure again shows that the TJA algorithm is sig-
nificantly faster for the temperature dataset (where significantly more objects
are transferred to the sink node) and comparable for the wind-speed dataset.
In particular, for the temperature dataset we obtained the following measure-
ments on average (for our 10 repetitions): 4,507ms for TPUT and 3,797ms for
TJA. For the wind-speed dataset we obtained the following measurements on
average: 9,598ms for TPUT and 9,815ms for TJA.

6 Related Work

There has been a lot of work in the area of Top-k query processing in the
database community [13,15,28,4,5,7,12,19,22,16,3,17,30,31,25,35,36]. Most of
these solutions have been developed for either centralized database manage-
ment scenarios or client-server settings. An excellent survey of these algorithms
appears in [20]. In this section we will focus our attention on exact answers that
are generated by sporadic distributed Top-k queries which are executed over
a multi-hop communication network. Top-k query processing over a multi-hop
network is of particular importance in this work, firstly because the multi-
hop network is the fundamental assumption underlying the operation of many
distributed environments such as sensor and p2p networks.

The Fagin Algorithm (FA) [13], is one of the first Top-k query processing algo-
rithms over middleware systems which interact with a number of autonomous
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data sources. In FA, a querying node QN performs a two phase retrieval which
consists of a sorted access and random access phase. Initially, QN accesses the
n lists in parallel until it locates k objects which belong to all lists. In our
working example, this would be equivalent to retrieving the first two rows of
the table (as k = 1 and o3 now belongs to all lists). In the random phase, QN
requests from each node to send the score for any object whose score could not
be computed exactly (i.e., o1 and o4). Assuming a star topology, FA has with
very high probability a cost of O(m(n−1)/n · k1/n). A main problem with FA, is
that the initial sorted phase accesses all lists at the same depth. This results in
the retrieval of a large number of unnecessary object scores. Additionally, FA
cannot be executed efficiently in a multi-hop environment, because the sorted
phase is iterative. As a result, each iteration translates into a large number of
communication messages.

The most widely recognized algorithm for Top-k queries in a centralized en-
vironment is the Threshold Algorithm (TA) [13]. TA starts out by performing
a parallel sorted access to the n lists. While an object oi is seen by QN, TA
performs a random access to the other lists to find the exact score for oi (i.e.,∑n

j=1 oij). In our working example it would first resolve exactly the two objects
in the first row (i.e., o3 = 4.05 and o1 = 3.63). After finding the exact score for
each object in the current row 4 , it computes a threshold value τ as the sum of
all exact scores in the current row (i.e., τ = .99+ .91+ .92+ .74+ .67 = 4.23).
Since τ is larger than both scores of o3 and o1, the TA algorithm performs an-
other iteration in which the threshold τ is refined as the sum of scores across
the second line. The algorithm stops after k objects have been found with
a score above τ . While the TA algorithm accesses less objects than FA, it
also uses more round trips as it invokes several small random accesses. This
would again translate into an arbitrary large number of phases, which is highly
undesirable for a distributed environment.

The advantages of our TJA algorithm over other query processing algorithms,
such as TA and FA, are twofold:

(1) Instead of performing random accesses for individual objects, TJA per-
forms them all together in the clean-up phase. This minimizes the number
of messages, and therefore also the number of transmitted bytes 5 . Addi-
tionally, it also minimizes the delay to find the expected answer.

(2) By structuring the communication into three phases, it increases in-
network aggregation. This happens because individual random accesses
yield less aggregation than the aggregation achieved by a few combined
random accesses.

The TPUT (Three-Phase Uniform Threshold) algorithm, proposed by Cao and

4 Sorted access is executed on a row-at-a-time basis
5 Note that each message has a fixed overhead (a header)
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Wang in [8], was the first fixed-round algorithm designed for single-hop net-
works. TPUT has been overviewed in Section 4.1 of this paper and Section 5,
has presented an experimental assessment of its performance. The disadvan-
tage of TPUT, over our TJA algorithm, is that the threshold τ is uniform
for all nodes. This results in the transfer of an unnecessarily large number of
objects that are not in the final result. On the contrary, the TJA algorithm
uses an non-uniform threshold which is different for each node, and which
provides the algorithm with a higher pruning capability. Note that the TPUT
algorithm utilizes a value as a threshold, while we utilize a set of objects. As
a result, our solution can prune away non-qualifying objects more efficiently.
One final point is that the original TPUT idea only focus on single-hop topolo-
gies rather than on multi-hop topologies, as we do and consequently does not
exploit any further in-network optimizations such as the upper-bound mech-
anism we proposed.

Yu et. al., presented in [37] three fixed round algorithms coined TPAT (Three-
Phase Adaptive-Threshold), TPOR (Three-Phase Object-Ranking), and HT
(Hybrid-Threshold). The first algorithm TPAT, is identical with TPUT in the
first and the last phase, while in its second phase, it computes a non-uniform
threshold, rather than a uniform one, as follows: In the second phase QN uses
the partial scores from the first phase to divide the threshold τ into τ1, τ2, ..., τn

based on summary statistics sent from nodes in the network. These statistics
are represented as equi-depth histograms. The collection of τ thresholds is then
disseminated back to the nodes on the network, similarly to TPUT. In that
respect, the TPAT algorithm is a direct improvement of the TPUT algorithm,
that fixes the uniform threshold problem.

The TPOR [37] algorithm is similar to the TJA algorithm, in a sense that
both algorithms disseminate a set list that defines a threshold rather than a
uniform threshold, but the TPOR algorithm does not deploy the hierarchical
upper-bound mechanism devised by the TJA algorithm.

The third algorithm, HT, combines the advantages of TPOR and TPAT in the
following manner: During the second phase, the central manager QN, requests
from all the nodes to send any object with a score higher than a hybrid
threshold, calculated as the maximum of the uniform threshold obtained from
TPAT and the threshold obtained from TPOR. Although this heuristic has
been shown to perform well in many occasions, it introduces an additional
round trip, differentiating it therefore from all the aforementioned algorithms
which were three-phase, rather than four-phase, algorithms.

Top-k algorithms have also been studied in other settings, where the pruning
of the retrieval space is highly desirable (Table 3 provides a taxonomy). Bruno
et al. [7] discuss the problem of answering Top-k queries over web accessible
databases. Babcock and Olston [4] consider the problem of continually pro-
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Table 3
A taxonomy of popular distributed Top-k query processing algorithms.

Algorithm Phases Scores Result Query

FA/TA[13] Undefined Exact Exact On-Demand

TPUT[8], TPAT [37] 3 Exact Exact On-Demand

TJA [40], TPOR [37] 3 Exact Exact On-Demand

HA[37] 4 Exact Exact On-Demand

BABOLS[4] Contin. Approx Approx Continuous

MINT[38] Contin. Approx Exact Continuous

PROB[35] Iterative Approx Approx On-Demand

UB-K/UBLB-K[42] Iterative Approx. Exact On-Demand

KLEE[30] 3-4 Approx Approx On-Demand

viding approximate top-k answers using a technique we denote as BABOLS.
The problem is tackled by installing arithmetic constraints at each node which
define the current Top-k scores at any point. However the results are approx-
imate and continuous while our solution is designated for on-demand queries
that request the exact result. The continuous case was later also extended to
a hierarchical sensor network environment [11] and [29]. A similar approach
also appears in [38] but the given framework focuses on exact answers in wire-
less sensor networks. Note that monitoring of threshold functions and frequent
items over data streams has recently been an intense area of research [24,23,32].

The authors in [30], examine the problem of approximate Top-k queries in
distributed environments. The paper assumes that each node maintains an
approximation of the local scores instead of the actual scores. The approxima-
tion essentially consists of an equi-width histogram on the local scores along
with a bloom filter [6] per histogram bucket which captures object identifiers
inserted into the specific bucket. Therefore, their framework is appropriate for
approximate and on-demand queries over approximate scores while the UB-
K/UBLB-K [42] algorithms address a similar case but with exact rather than
approximate answers. A sampling-based approach to optimize Top-k queries
in sensor networks is also the core topic in [33].

In [5,21], the problem of identifying the Top-k objects from relations which
are horizontally fragmented over peers in a P2P environment is studied. The
proposed solution depends on each peer having knowledge of the total score
of each object that it manipulates. This is not possible for vertically parti-
tioned relations, as this requires access to all relations in their entirety, which
constitutes their approach inapplicable in our context.

Finally, most of the above approaches assume a star (or single-hop) commu-
nication topology, in which all nodes are directly accessible by the querying
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entity. On the other hand, our work has focused on the challenges of a hierar-
chical (or multi-hop) topology.

7 Conclusion & Future Work

In this paper we have studied Top-k query processing algorithms for dis-
tributed environments. The objective of a Top-k query is twofold: To find the k
highest-ranked answers to a user defined similarity function, and to minimize
some cost metric associated with the retrieval of the correct answers. TJA
uses a non-uniform threshold on the queried attribute in order to minimize
the number of tuples that have to be transferred towards the querying node so
that the correct answer can be computed. Additionally, TJA resolves queries
in the network rather than in a centralized fashion, which further minimizes
the consumption of bandwidth and delay.

Our extensive experimental evaluation using our middleware testbed reveals
that the algorithm we propose is both efficient and practical. Specifically, our
results indicate that TJA consumes an order of magnitude less network bytes
than other alternatives, scales well with respect to the parameter k and the
network topology. Our study also reveals that the algorithm executes faster
than its competitors and works well in dynamic environments.

We believe that our algorithm will be a useful component for query processing
engines of distributed data management systems in the future. In the future
we plan to extend the prototype of our algorithm that has been implemented
in the context of sensor network context [2]. We additionally plan to make our
middleware infrastructure publicly available.
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