Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 16

Big Data Management VI
(MapReduce Programming)

Credits: Pietro Michiardi (Eurecom): Scalable Algorithm Design,

Apache MapReduce Tutorial

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

16-1

http://www2.cs.ucy.ac.cy/~dzeina/

Outline of Lecture

MapReduce "Hello World™ Program Explained
— Wordcount in MR, Example Execution, Pseudocode
— Mean Computation in MR, JAVA API Preview

Operational Issues:
— What to configure and what not

Combiners and In-Memory Combiners

Relational Operators in MR

— Selection/Projection

— Union / Intersection / Set Difference
— Join /Aggregation

16-2

Introduction to Hadoop
Programming

In the previous lecture we learnt how a MapReduce program executes
In @ Hadoop Environment without actually seeing the program.

In this lecture we will learn more about the basic principles on how to
write MapReduce Programs in Hadoop.
To validate some of the ideas in this lecture, ensure that Hadoop is
Installed, configured and running. More details:

— Single Node Setup for first-time users.

— Cluster Setup for large, distributed clusters.

In our laboratory we will use a Single Node Setup (consult the image
that has been circulated by the TA).
— Hadoop v2 requires Java 7 or greater— our labs & assignments ©.

— Hadoop v3 (Jan. 17, alpha) requires Java 8 — will not be seen further ®

* New Features: HDFS Erasure encoding, YARN v2 Timeline service (HBase
store) Opportunistic containers, 2 Namenodes, default ports changed,
Filesystem Connectors (e.g., Microsoft Azure Data Lake), Intra-DataNode
Balancer

16-3

https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/ClusterSetup.html

MapReduce "Hello World”
~ (WordCount 1/2)

import java.util. StringTokenizer; As of JAVA 7 Generic Example: no way to verify,
at compile time, how the class is used (e.g., as

import org.apache.hadoop.conf.Configuration; Integer String etc. ®

import org.apache.hadoop.fs.Path;

public class Box {

import org.apache.hadoop.io.IntWritable; private Object objecti®—
Import OrgapaChehadoopIOTeXt’ public woid set(0Object object) { this.object = object; }
import org.apache.hadoop.mapreduce.Job; public Object get() { return object; }

import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
Input(k,v) /Output(k’,v’)
public class WordCount { =y = —

public static class TokenizerMapper extends Mapper<Obiject, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1); // optimized serialization of JAVA.Integer() class
private Text word = new Text();
Input(k,v)
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) { Applications may override
q . Tok] . d) the run(org.apache.hadoop.mapreduce.Mapp
word.set(itr.nextToken()); context.write(word, one); er.Context) method to exert greater control
} H'-’ on map processing e.g. field delimiters, etc.
/I map Output(k’,v’)

} 16-4

https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html

MapReduce “Hello World”
(WordCount 2/2)

Input(k,v) Output(k’,v’)
~

public static class IntSumReducer extends Reducer<Text,IntWritable, Text,IntWritable> {

private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

Int sum = 0 \ > Implementing this interface allows an object to be
for (IntWritable val : values) { the target of the "for-each loop" statement. (as of 1.5)
sum += val.get(); \

) As of JAVA 5 Enhanced For Loop: iterate
reSU|t'Set(§um); through all the elements of a Collection.
context.write(key, result);
} ey’
} Output(k’,v’)

Cleanup(), setup() are not mandatory

public static void main(String[] args) throws Exception { . .
in Mapper (see next slide)!

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class); Multi-threading is possible with
job.setMapperClass(TokenizerMapper.class), Multithreaded Mapper when the Mapper
J.ob.setCombmerCIass(IntSumReducer.class); is not CPU bound (the time to Complete
job.setReducerClass(IntSumReducer.class); c .

the task is not determined by the slow

job.setOutputKeyClass(Text.class); .
job.setOutputValueClass(IntWritable.class); CPU but the Mapper |OgIC).

FileInputFormat.addinputPath(job, new Path(args[0])); => If using more CPU power would

FileOutputFormat.setOutputPath(job, new Path(args[1])); Speedup the program execution.

System.exit(job.waitForCompletion(true) ? 0 : 1); 6-5
}

Execution

'''''''

(Wordcount, Anagram)
o | n-mmm oo |

In laboratory you saw the
anagram problem
sort

—_—

Map(“eilnst”, Silent”)
Map(“eilnst”, “Listen”)

Reduce(“eilnst”, [Silent,
Listen])

=> Each reducer takes care of
each key.

Remember!

The Map() and Reduce() blocks are
the personal loops of the tasks, i.e.,
« 1 Map per partitioned data group.

« 1 Reduce per unique key.

Mapper Functions
(Reducer Similar)

Mapper v2.8 Functions

eprotected void setup (org.apache.hadoop.mapreduce.Mapper.Context context)
throws IOException, InterruptedException
— Called once at the beginning of the task.

eprotected void map (KEYIN key, VALUEIN value,
org.apache.hadoop.mapreduce.Mapper.Context context) throws I0Exception,
InterruptedException

— Called once for each key/value pair in the input split. Most applications should
override this, but the default is the identity function (k,v) => (k,v).
eprotected void cleanup (org.apache.hadoop.mapreduce.Mapper.Context context)
throws IOException, InterruptedException
— Called once at the end of the task.
epublic void run(org.apache.hadoop.mapreduce.Mapper.Context context) throws
IOException, InterruptedException

— Expert users can override this method for more complete control over the execution
of the Mapper.

*Methods inherited from class java.lang.Object: clone, equals, finalize,
getClass, hashCode, toString, thread control: notify, notifyAll, wait

*How to run the code — More details:
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html#Mapper() 16-7

http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html

Word Count Pseudocode
(easier for next slides)

“Hello World” in “Map Reduce”

1: class MAPPER | Both MAPPER and

2 method MAP(offset a, line /) REDUCER could skip EMIT(),

3: for all term t € line / do e.g., the case of filter

4 EMIT(term ¢, count 1)

1: class REDUCER

2 method REDUCE(term t, counts [cq, Co, .. .]) lterator <> TABLE

3- sum « 0 (we need_to _beg_in from
the beginning in the

4: for all count ¢ € counts [c1, Cz, ...| dO terator if we want to

3. sum < sum-+ ¢ rewind, iterator.reset())

6 EMIT(term ¢, count sSum)

16-8

Example:
Mean Computation

Problem:

* We have a large dataset where input keys are strings and input values
are integers (e.g., http://www.cs.ucy.ac.cy, 10s)

* We wish to compute the mean of all integers associated with the same key
» Almost identical to “word count” (now “word average”)!

1: class MAPPER

2: method MAP(string t, integer r) |dentity emit function (could

3 EMIT(string £, integer r) be omitted as it is default)

1: class REDUCER

2 method REDUCE(string tintegers [y, 2, . . .])

3 sum < 0

4 cnt <+ 0

5: for all integer r € integers [rq, I2,...] do

S iﬁ;né_cil;’:z:r ’ Note!_: A good idea here w_ould be to use a
symmetric hash (e.g., MD5), i.e., key=md5(URL)

8 Favg < sum/cnt instead of key=URL to minimize string

9 EMIT(string £, integer avg) comparisons. At the end we could

URL = reverse-md5(md5(URL)) 16.9

http://www.cs.ucy.ac.cy/

Operational Issues

Aspects that are not under the control of the designer

* Where a mapper or reducer will run

* When a mapper or reducer begins or finishes

* Which input key-value pairs are processed by a specific mapper

* Which intermediate key-value pairs are processed by a specific reducer

Aspects that can be controlled
» Construct data structures (intermediate results) as keys and values

» Execute user-specified initialization (setup()) and termination code
(cleanup()) for mappers and reducers

* Preserve state across multiple input and intermediate keys in mappers and
reducers (in-memory combiners — discussed next)

» Control the sort order of intermediate keys, and therefore the order in
which a reducer will encounter particular keys.

» Control the partitioning of the key space, and therefore the set of keys that
will be encountered by a particular reducer.

16-10

. Combiners (optional)

« Combiners are a general mechanism to reduce the
amount of intermediate data (after the map task)
— They could be thought of as “mini-reducers” before data is
shipped to reducers
— Reduce the number and size of key-value pairs to be shuffled

« Back to our running example: word count

— Combiners aggregate term counts across documents processed
by each map task
— If combiners take advantage of all opportunities for local
aggregation we have at most m X V intermediate key-value
1 1,000,000
paIrS 100,000&\
* m: number of mappers 10,000,
* V : number of unique terms in the collection

1,000
100
— Note: due to Zipfian nature of term distribution " \

not all mappers will see all terms. -

Frequency

100,000
1,000,000

A E\
N

Combiners (optional)

« The use of combiners must be thought carefully

— In Hadoop, they are optional: the correctness of the algorithm
cannot depend on computation (or even execution) of the
combiners

— In Apache Spark, they’re mostly automatic

Combiners Shuitling
el el =l mapreduce.reduce.shuffle.
T g 2 | |)
: : : l R i
B B B B B
B B B =] =]
”?"T'"&t* | !
o B it S e S - =3
_____________________ /

\"‘~—L____¢____J-——” dj ~
Bl - K =
B KBl = - K
- [- K 12

lient
) tapReduce()
rewn
" read()
acation L] u
Output
dump() Tepository
1 result 1] —|
result 2]

« Hadoop does not guarantee combiners to be

executed
— Actually, combiners might only be called if the number of map
output records is greater than a threshold, i.e., 4
 Problem: Can we enforce the execution of
aggregation at the end of the Map phase?
— © Yes, by implementing the aggregation logic in Mapper.
— ® Not always very good as it the function state:

* In-memory combining breaks the functional programming
paradigm due to state preservation.

* In-memory combining strictly depends on having sufficient
memory to store intermediate results

A possible solution: “block™ and “flush”

— Nevertheless, let’'s see an example...
16-13

In-Memory Combiners
(inside Mapper)

1: class MAPPER

2 method MAP(offset g, line /)
3: H < new HashMap

4: forallterm t € line / do

5 H{t} <« H{t} + 1

6 foralltermt € Hdo

7 EMIT(term ¢, count H{t})

« We use a hash map to accumulate intermediate
results

— The data structure is also know as “associative array” or
“dictionary”

— The array is used to tally up (aggregate) term counts within a
single “document”

— The Emit method is called only after all InputRecords have been
processed 16-14

Selections (o) In MapReduce

* Revision of Relational Algebra Operators
— http://www2.cs.ucy.ac.cy/~dzeina/courses/epl342/schedule.html
(Lecture 8 and 9).
* In practice, selections do not need a full-blown
MapReduce implementation
— They can be implemented in the map phase alone
— Actually, they could also be implemented in the reduce portion!
— Remember that the input to Reduce is an Iterator (it is constructed
as the packets arrive at the reducer not a fully constructed list on
which).
A MapReduce implementation of o-(R)
— For each tuple t in R, check if t satisfies C
— If so, emit a key/value pair (t, NULL)

— (VOID) Identity Reducer
16-15

Projections (11) in MapReduce

A note on duplicates in projections:

— Relational Algebra (1) generates NO duplicates (RA operates
with sets). Notation we use: T5,stneT s(R)

— SQL (SELECT): generates duplicates (SQL operates with
multisets). Notation we use SELECT: mw¢(R). Of course there is
also SELECT DISTINCT, again notated with 1,57 net s(R)

« How to implement Projections in MR?
— 1s(R) (ALL): Keeps Duplicates => Only requires map task.
— T stnet s(R): Removes Duplicates => Requires map + reduce

Ty stinet s(R) Implementation

MAP
— Foreachtupletin R, construct a tuple t’ that contains only the S columns.

— Emit a key/value pair (t’,NULL)

REDUCE

— Foreach key t’ obtained from mappers (t’, [<NULL>]), take the key only.
— Emit a key/value pair (¢, NULL)

Q)

Unions (V) in MapReduce

RUS={x|x€ERVXx€ES} S2saaas
— Relations R and S must have the same schemal! RUNION
A note on duplicates in unions: N s a23aaas

— R U, S: Keeps Duplicates => Requires Map Task only
— R U S : Removes Duplicates => Requires Map + Reduce Task

* Qutline of R U S Implementation:
— Map tasks will be assigned chunks from either R or S *
— Mappers don’t do much, just pass by to reducers. Reducers do duplicate
elimination (not necessary in R U, S)
— * Note: Hadoop MapReduce supports reading multiple inputs.

* How to implement R U S in MR?
MAP: For eachtupletin R and S, emit a key/value pair (t, NULL) // identity function
REDUCE
— Foreach key t’ obtained from mappers (t’, [<NULL>]), take the key only.
— Emit a key/value pair (t’, NULL) //i.e., Either an R tuple or an S tuple.
— Also works when R and/or S have duplicates => Still generates (t’, [<NULL>]), 16-17

Intersection (N) in MapReduce

Examples:

FQ(]S;::{X:|X:E|Q;A)(EEE;} R:1,2,2,2,3,4,4
— Relations R and S must have the same schema! SESAAES
. . . . R INTERSECT S: 2, 3,4
* A note on duplicates in intersections: R INTERSECT ALL & 2.3, 4.4

— R N S: Removes Duplicates => Map + Reduce
— RN, S: Keeps Duplicates=> Map+Reduce (not available in most DBMS)

* Qutline of R N S Implementation:
— Map tasks will be assigned chunks from either R or S

— Mappers don’t do much, just pass by to reducers. Reducers do duplicate
elimination (not necessary in RN ,,, S)

* How to implement RN Sin MR (R, S: no duplicates)
MAP: Foreachtupletin R and S, emit a key/value pair (t, t)

REDUCE

— Foreach key t’ obtained from the mappers, if (t’, [t’, t']) (i.e., these 2 entries must
have come from R and S) then emit the key/value pair (t’, NULL)

— Otherwise, emit nothing // i.e., (t’, [t’]) OR (t’, [<KNULL>])

— I'If R, S contain duplicates, | must annotate the tin map (t,'R’), (t,S’), ... t9¢ 14
avoid self-intersectionwithineR-and within-Sarespectively:

Set Difference (-) Revision

R-S={X|Xx€ERAX€S} Note: R—-S#S-R |

|Student— Instructor| =5

(d)

Relations R and S must have the same schemal!

Fn Ln
Johnny Kohler
Barbara | Jones
Amy Ford
Jimmy Wang
Ernest Gilbert

(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname

Susan* | Yao John Smith
Ramesh*| Shah Ricardo | Browne
Johnny Kohler Susan % | Yao
Barbara | Jones Francis | Johnson
Amy Ford Ramesh™*| Shah
Jimmy | Wang |Instructor|=5
Ernest Gilbert

|Student|=7

lInstructor — Student| =3

(e)

Fname Lname
John Smith
Ricardo | Browne
Francis | Johnson

16-19

Set Difference (-) in MR

 Outline of R - S Implementation:
— The map function passes tuples from R and S to the reducer
— it must inform the reducer whether the tuple came from R or S!

« How to implement R - S in MR?
MAP:
- For atuple t in R emit a key/value pair (t, ‘R") and for a tuple t in S, emit a
keyl/value pair (t,"S’)
REDUCE:
— For each key t, do the following:
 If the inputis (t,['R"]), then emit (t, NULL)
. If the inputis (t,['R’, 'S]) or (t,['S’, 'R]), or (t,['S"]), don’t emit anything!

16-20

Join (< ,®) In MapReduce

R® i-S = O 4-(R X S)

« This topic is subject to continuous refinements
— There are many JOIN operators and many different implementations

 Let’s look at two relations R(A, B) and S(B, C)

— We must find tuples that agree on their B components

— We shall use the B-value of tuples from either relation as the key

— The value will be the other component and the name of the relation

— That way the reducer knows from which relation each tuple is coming from

« How to implement R ® S in MR?

MAP:

— For each tuple (a,b) of R emit the key/value pair (b, (‘R’,a))

— For each tuple (b,c) of S emit the key/value pair (b, (‘S’,c))

REDUCE:

— Each key b will be associated to a list of pairs that are either (‘R’, a) or (‘S’, c)

— Generate keyl/value pairs (b,[(a,,b,c,), (a,,b,C>), ..., (a,,b,c,)] and emit the unique
triples (a,b,c) => the final unique step would be best to be implemented with a second MR
job — see assignment! 1021

Aggregation (y) in MapReduce

 We already discussed Aggregates, remember the Mean Example.
— Map: The map operation prepares the grouping
— Reduce: The reducer computes the aggregation.
— Simplifying assumptions: one grouping attribute and one aggregation function. —
easy to lift these assumptions and generalize the discussion.
« Different Types of Aggregates :

— Distributive Aggregates: COUNT,SUM,MAX,MIN,AVG(S/C) => reduce uses a
rolling computation of the aggregate.

— Holistic Aggregates: MEDIAN, MEAN => reduce has to retain all incoming tuples
(coming through the iterator) (k,[v1,...,vn]) and then compute the aggregate.
* How to implement y, g R in MR?
MAP: For atuplet (a,b,c) in R emit a key/value pair (a,b)
REDUCE: For each key t, do the following:
 Distributive Aggregates: Apply 8 on the incoming tuples [b1,...bn] on-the-fly

» Holistic Aggregates: Accumulate the incoming tuples in a table. At the end
apply 6 on the constructed table.
« Emit the key/value pair (a,x) where x = 6([b1,...,bn])
10-22

Generalizing MR Operators

« Having developed operators for basic RA operators,
one could now develop higher-level declarative
languages (e.g., SQL, PIG) that translate into MR jobs!

« Example Apache HUE on top of HIVE (Hadoop / HDFS)

DATABASE

RRRRRRR
LIMIT 20

TP [PP Y

16-23

