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Outline of Lecture 

• MapReduce “Hello World” Program Explained 

– Wordcount in MR, Example Execution, Pseudocode 

– Mean Computation in MR, JAVA API Preview 

• Operational Issues:  

– What to configure and what not 

• Combiners and In-Memory Combiners 

• Relational Operators in MR 

– Selection/Projection 

– Union / Intersection / Set Difference 

– Join /Aggregation 
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Introduction to Hadoop 

Programming 
• In the previous lecture we learnt how a MapReduce program executes 

in a Hadoop Environment without actually seeing the program. 

• In this lecture we will learn more about the basic principles on how to 

write MapReduce Programs in Hadoop. 

• To validate some of the ideas in this lecture, ensure that Hadoop is 

installed, configured and running. More details: 

– Single Node Setup for first-time users. 

– Cluster Setup for large, distributed clusters. 

• In our laboratory we will use a Single Node Setup (consult the image 

that has been circulated by the TA). 

– Hadoop v2 requires Java 7 or greater– our labs & assignments . 

– Hadoop v3 (Jan. 17, alpha) requires Java 8 – will not be seen further  

• New Features: HDFS Erasure encoding, YARN v2 Timeline service (HBase 

store) Opportunistic containers, 2 Namenodes, default ports changed, 

Filesystem Connectors (e.g., Microsoft Azure Data Lake), Intra-DataNode 

Balancer 

 

 

https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r2.8.0/hadoop-project-dist/hadoop-common/ClusterSetup.html
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MapReduce “Hello World” 

(WordCount 1/2) 
import java.io.IOException; 

import java.util.StringTokenizer; 

 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path; 

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 

  

public class WordCount {    

  public static class TokenizerMapper  extends Mapper<Object, Text, Text, IntWritable> { 

   

         private final static IntWritable one = new IntWritable(1); // optimized serialization of JAVA.Integer() class  

         private Text word = new Text(); 

 

         public void map(Object key, Text value, Context context) throws IOException, InterruptedException { 

              StringTokenizer itr = new StringTokenizer(value.toString()); 

      while (itr.hasMoreTokens()) { 

        word.set(itr.nextToken()); context.write(word, one); 

      } 

          } // map 

  } 

Applications may override 

the run(org.apache.hadoop.mapreduce.Mapp

er.Context) method to exert greater control 

on map processing e.g. field delimiters, etc. 

As of JAVA 7 Generic Example: no way to verify, 

at compile time, how the class is used (e.g., as 

Integer, String, etc.   

} } Input(k,v) Output(k’,v’) 

} Input(k,v) 

} 

Output(k’,v’) 

https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Mapper.html
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MapReduce “Hello World” 

(WordCount 2/2) 

   public static class IntSumReducer  extends Reducer<Text,IntWritable,Text,IntWritable> { 

    private IntWritable result = new IntWritable(); 

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { 

      int sum = 0; 

      for (IntWritable val : values) { 

        sum += val.get(); 

      } 

      result.set(sum); 

      context.write(key, result); 

    } 

  } 

 

  public static void main(String[] args) throws Exception { 

    Configuration conf = new Configuration(); 

    Job job = Job.getInstance(conf, "word count"); 

    job.setJarByClass(WordCount.class); 

    job.setMapperClass(TokenizerMapper.class); 

    job.setCombinerClass(IntSumReducer.class); 

    job.setReducerClass(IntSumReducer.class); 

    job.setOutputKeyClass(Text.class); 

    job.setOutputValueClass(IntWritable.class); 

    FileInputFormat.addInputPath(job, new Path(args[0])); 

    FileOutputFormat.setOutputPath(job, new Path(args[1])); 

    System.exit(job.waitForCompletion(true) ? 0 : 1); 

  } 

} 

As of JAVA 5 Enhanced For Loop: iterate 

through all the elements of a Collection.  

} } Input(k,v) Output(k’,v’) 

> Implementing this interface allows an object to be 

the target of the "for-each loop" statement. (as of 1.5) 

} 

Output(k’,v’) 

Cleanup(), setup() are not mandatory 

in Mapper (see next slide)! 

Multi-threading is possible with 

MultithreadedMapper when the Mapper 

is not CPU bound (the time to complete 

the task is not determined by the slow 

CPU but the Mapper logic). 

=> If using more CPU power would 

speedup the program execution. 
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Execution 

(Wordcount, Anagram) 

In laboratory you saw the 

anagram problem 

 

Map(“eilnst”, Silent”) 

Map(“eilnst”, “Listen”) 

 

Reduce(“eilnst”, [Silent, 

Listen]) 

 

=> Each reducer takes care of 

each key. 

sort 

Remember! 

The Map() and Reduce() blocks are 

the personal loops of the tasks, i.e., 

• 1 Map per partitioned data group.  

• 1 Reduce per unique key. 
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Mapper Functions 

(Reducer Similar) 
Mapper v2.8 Functions 
•protected void setup(org.apache.hadoop.mapreduce.Mapper.Context context) 

throws IOException, InterruptedException 

– Called once at the beginning of the task. 

•protected void map(KEYIN key, VALUEIN value, 

org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, 

InterruptedException 

– Called once for each key/value pair in the input split. Most applications should 

override this, but the default is the identity function (k,v) => (k,v). 

•protected void cleanup(org.apache.hadoop.mapreduce.Mapper.Context context) 

throws IOException, InterruptedException 

– Called once at the end of the task. 

•public void run(org.apache.hadoop.mapreduce.Mapper.Context context) throws 

IOException, InterruptedException 

– Expert users can override this method for more complete control over the execution 

of the Mapper. 

•Methods inherited from class java.lang.Object: clone, equals, finalize, 

getClass, hashCode, toString, thread control: notify, notifyAll, wait 

•How to run the code – More details: 
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html#Mapper()  

http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://docs.oracle.com/javase/7/docs/api/java/lang/InterruptedException.html?is-external=true
https://hadoop.apache.org/docs/r2.8.0/api/org/apache/hadoop/mapreduce/Mapper.html
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Word Count Pseudocode 

(easier for next slides) 

Both MAPPER and 

REDUCER could skip EMIT(), 

e.g., the case of filter 

Iterator <> TABLE 

(we need to begin from 

the beginning in the 

iterator if we want to 

rewind, iterator.reset()) 
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Example: 

Mean Computation  
Problem: 

• We have a large dataset where input keys are strings and input values 

are integers  (e.g., http://www.cs.ucy.ac.cy, 10s) 

• We wish to compute the mean of all integers associated with the same key 

• Almost identical to “word count” (now “word average”)!  

Identity emit function (could 

be omitted as it is default) 

Note!: A good idea here would be to use a 

symmetric hash (e.g., MD5), i.e., key=md5(URL) 

instead of key=URL to minimize string 

comparisons. At the end we could    

URL = reverse-md5(md5(URL)) 

http://www.cs.ucy.ac.cy/
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Operational Issues 

Aspects that are not under the control of the designer  

• Where a mapper or reducer will run  

• When a mapper or reducer begins or finishes  

• Which input key-value pairs are processed by a specific mapper  

• Which intermediate key-value pairs are processed by a specific reducer  

Aspects that can be controlled  

• Construct data structures (intermediate results) as keys and values  

• Execute user-specified initialization (setup()) and termination code 

(cleanup()) for mappers and reducers 

• Preserve state across multiple input and intermediate keys in mappers and 

reducers (in-memory combiners – discussed next) 

• Control the sort order of intermediate keys, and therefore the order in 

which a reducer will encounter particular keys. 

• Control the partitioning of the key space, and therefore the set of keys that 

will be encountered by a particular reducer. 
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Combiners (optional)         

• Combiners are a general mechanism to reduce the 

amount of intermediate data (after the map task) 

– They could be thought of as “mini-reducers” before data is 

shipped to reducers  

– Reduce the number and size of key-value pairs to be shuffled  

• Back to our running example: word count  

– Combiners aggregate term counts across documents processed 

by each map task  

– If combiners take advantage of all opportunities for local 

aggregation we have at most m × V intermediate key-value 

pairs  

• m: number of mappers  

• V : number of unique terms in the collection  
 

– Note: due to Zipfian nature of term distribution             s              , 

not all mappers will see all terms. 

 

* 
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Combiners (optional) 

• The use of combiners must be thought carefully  

– In Hadoop, they are optional: the correctness of the algorithm 

cannot depend on computation (or even execution) of the 

combiners  

– In Apache Spark, they’re mostly automatic  

 Combiners 
Shuffling 

mapreduce.reduce.shuffle. 
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Combiners (optional)         

• Hadoop does not guarantee combiners to be 

executed  

– Actually, combiners might only be called if the number of map 

output records is greater than a threshold, i.e., 4  

• Problem: Can we enforce the execution of 

aggregation at the end of the Map phase? 

–  Yes, by implementing the aggregation logic in Mapper. 

–  Not always very good as it the function state: 

• In-memory combining breaks the functional programming 

paradigm due to state preservation. 

• In-memory combining strictly depends on having sufficient 

memory to store intermediate results  

• A possible solution: “block” and “flush”  

– Nevertheless, let’s see an example… 

 

 

* 
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In-Memory Combiners 

(inside Mapper) 

 

 

 

 

 

• We use a hash map to accumulate intermediate 

results  

– The data structure is also know as “associative array” or 

“dictionary”  

– The array is used to tally up (aggregate) term counts within a 

single “document”  

– The Emit method is called only after all InputRecords have been 

processed  
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Selections (σ) in MapReduce 

• Revision of Relational Algebra Operators 

– http://www2.cs.ucy.ac.cy/~dzeina/courses/epl342/schedule.html  

(Lecture 8 and 9). 

• In practice, selections do not need a full-blown 

MapReduce implementation  

– They can be implemented in the map phase alone  

– Actually, they could also be implemented in the reduce portion! 

– Remember that the input to Reduce is an Iterator (it is constructed 

as the packets arrive at the reducer not a fully constructed list on 

which). 

• A MapReduce implementation of σC(R)  

– For each tuple t in R, check if t satisfies C  

– If so, emit a key/value pair (t, NULL) 

– (VOID) Identity Reducer 
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Projections (π) in MapReduce 

• A note on duplicates in projections: 

– Relational Algebra (π) generates NO duplicates (RA operates 

with sets). Notation we use: πDISTINCT S(R)  

– SQL (SELECT): generates duplicates (SQL operates with 

multisets). Notation we use SELECT: πS(R).  Of  course there is 

also SELECT DISTINCT, again notated with πDISTINCT S(R)  

• How to implement Projections in MR? 
– πS(R) (ALL): Keeps Duplicates => Only requires map task.  

– πDISTINCT S(R): Removes Duplicates => Requires map + reduce 

• πDISTINCT S(R) Implementation 
MAP 

– For each tuple t in R, construct a tuple t’ that contains only the S columns. 

– Emit a key/value pair (t’,NULL) 

REDUCE  

– Foreach key t’ obtained from mappers (t’, [<NULL>]), take the key only. 

– Emit a key/value pair (t’, NULL)  
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Unions (∪) in MapReduce 

R ∪ S = { x | x ∈ R ∨ x ∈ S }  
– Relations R and S must have the same schema! 

• A note on duplicates in unions: 

– R ∪ALL S : Keeps Duplicates => Requires Map Task only 

– R ∪ S : Removes Duplicates => Requires Map + Reduce Task 

• Outline of R ∪ S Implementation: 

– Map tasks will be assigned chunks from either R or S * 

– Mappers don’t do much, just pass by to reducers. Reducers do duplicate 

elimination (not necessary in R ∪ALL S) 

– * Note: Hadoop MapReduce supports reading multiple inputs.  

• How to implement R ∪ S in MR?  

MAP:  For each tuple t in R and S, emit a key/value pair (t, NULL) // identity function 

REDUCE  

– Foreach key t’ obtained from mappers (t’, [<NULL>]), take the key only. 

– Emit a key/value pair (t’, NULL)  // i.e., Either an R tuple or an S tuple. 

– Also works when R and/or S have duplicates => Still generates (t’, [<NULL>]),  

R: 1, 2, 2, 2, 3, 4, 4 

S: 2, 3, 4, 4, 4, 5 

 

R UNION S:  

1, 2, 3, 4, 5 

R UNION ALL S:  

1, 2, 2, 2, 3, 4, 4, 2, 3, 4, 4, 4, 5 
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Intersection (∩) in MapReduce 

R ∩ S = { x | x ∈ R ∧ x ∈ S } 
– Relations R and S must have the same schema! 

• A note on duplicates in intersections: 

– R ∩ S : Removes Duplicates => Map + Reduce 

– R ∩ALLS: Keeps Duplicates=> Map+Reduce (not available in most DBMS) 

• Outline of R ∩ S Implementation: 

– Map tasks will be assigned chunks from either R or S  

– Mappers don’t do much, just pass by to reducers. Reducers do duplicate 

elimination (not necessary in R ∩ ALL S)  

• How to implement R ∩ S in MR (R, S: no duplicates) 

MAP:  For each tuple t in R and S, emit a key/value pair (t, t) 

REDUCE  

– Foreach key t’ obtained from the mappers, if (t’, [t’, t’]) (i.e., these 2 entries must 

have come from R and S)  then emit the key/value pair (t’, NULL) 

– Otherwise, emit nothing // i.e., (t’, [t’]) OR (t’, [<NULL>]) 

– // If R, S contain duplicates, I must annotate the t in map (t,‘R’), (t,‘S’),  … to 

avoid self-intersection within R and within S, respectively. 

 

Examples: 

R: 1, 2, 2, 2, 3, 4, 4 

S: 2, 3, 4, 4, 4, 5 

 

R INTERSECT S: 2, 3, 4 

R INTERSECT ALL S: 2, 3, 4, 4 
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Set Difference (-) Revision 

R – S = { x | x ∈ R ∧ x ∉ S }  Note: R – S ≠ S – R 
– Relations R and S must have the same schema! 

|Instructor|=5 

|Student|=7 

|Student- Instructor| = 5 |Instructor – Student| = 3 

* 

* 

* 

* 
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Set Difference (-) in MR 

• Outline of R - S Implementation: 

– The map function passes tuples from R and S to the reducer 

– it must inform the reducer whether the tuple came from R or S! 

 

• How to implement R - S in MR? 

MAP:   

- For a tuple t in R emit a key/value pair (t, ′R′) and for a tuple t in S, emit a 

key/value pair (t,′S′) 

REDUCE: 

– For each key t, do the following: 

• If the input is (t,[′R′]), then emit (t, NULL)  

• If the input is (t,[′R′, ′S′]) or (t,[′S′, ′R′]), or (t,[′S′]), don’t emit anything! 
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Join (    ,) in MapReduce 

R <attr> S   =    <attr>(R × S) 
• This topic is subject to continuous refinements  
– There are many JOIN operators and many different implementations  

• Let’s look at two relations R(A, B) and S(B, C)  

– We must find tuples that agree on their B components  

– We shall use the B-value of tuples from either relation as the key  

– The value will be the other component and the name of the relation  

– That way the reducer knows from which relation each tuple is coming from  

• How to implement R  S in MR? 

 MAP: 

– For each tuple (a,b) of R emit the key/value pair (b, (‘R’,a)) 

– For each tuple (b,c) of S emit the key/value pair (b, (‘S’,c)) 

REDUCE:   

– Each key b will be associated to a list of pairs that are either (‘R’, a) or (‘S’, c) 

– Generate key/value pairs (b,[(a1,b,c1), (a2,b,c2), …, (an,b,cn)] and emit the unique 

triples  (a,b,c) => the final unique step would be best to be implemented with a second MR 

job – see assignment! 
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Aggregation (γ) in MapReduce 

• We already discussed Aggregates, remember the Mean Example. 

– Map: The map operation prepares the grouping 

– Reduce: The reducer computes the aggregation. 

– Simplifying assumptions: one grouping attribute and one aggregation function. – 

easy to lift these assumptions and generalize the discussion. 

• Different Types of Aggregates : 

– Distributive Aggregates: COUNT,SUM,MAX,MIN,AVG(S/C)  => reduce uses a 

rolling computation of the aggregate. 

– Holistic Aggregates: MEDIAN, MEAN => reduce has to retain all incoming tuples 

(coming through the iterator) (k,[v1,…,vn]) and then compute the aggregate. 

• How to implement γΑ,θ(Β)R in MR? 

MAP:  For a tuple t (a,b,c) in R emit a key/value pair (a,b) 

REDUCE: For each key t, do the following: 

• Distributive Aggregates: Apply θ on the incoming tuples [b1,…bn] on-the-fly  

• Holistic Aggregates: Accumulate the incoming tuples in a table. At the end 

apply  θ on the constructed table. 

• Emit the key/value pair (a,x) where x = θ([b1,…,bn]) 
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Generalizing MR Operators 

• Having developed operators for basic RA operators, 

one could now develop higher-level declarative 

languages (e.g., SQL, PIG) that translate into MR jobs! 

• Example Apache HUE on top of HIVE (Hadoop / HDFS) 


