Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases

Lecture 8

Transaction Management Overview

Chapter 17.1-17.6: EImasri & Navathe, 5ED
Chapter 16.1-16.3 and 16.6: Ramakrishnan & Gehrke, 3ED

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

8-1

http://www2.cs.ucy.ac.cy/~dzeina/

Overview of Transaction Processing
(ETokoTtTnon Etrecepyaciac AocoAnyiwy)

We will now focus on Concurrency Control (EAgyxo
TauTtoxpoviag) and Recovery Management (TeEXVIKEG
Avakapyng) in cases of failures

Sophisticated users., application

Linsophisticated users {(customers, avel agents. etc.) progcrammers, DB administrators
[Woelb Forms] [Application Front Ends) [SOL Interface]
- - - - T
____________ _'-w.ul.. _C ml.n»l_amlx»_ —— Y S G o)
\'J'
I Plan Executor | I Parser | shona I
ucryw I
I O perator Evaluator | I Optimizer | Evaluatio
Engine |

T T e e i Files and Access NMethods
Manager 11"
Recowve
Buffer Manager e T e =i
= Aanagsen
Lock I
MNManager ,L.
— isk Space =t =
oncurrency Disk Space Manage:)
Control DEMS

——
THIS PARE FFHS PART
————
Index Files "-—'-._._ shows references
\ Swystem Catalog
Data Files DATARASE

8-2

Lecture Outline
Transaction Management Overview

16.0) Introduction to Transactions (AocoAnyieg n
2UVOAAaYEQ)

16.1) The ACID (Atomicity-Consistency-Isolation-
Durability) Properties

16.2) Transactions and Schedules (Xpovotrpoypauua)

16.3) Concurrent Executions of Transactions
(Tautoxpoveg EkTeAEoeig AocoAnyiwyv) and Problems

16.6) Transaction Support in SQL

Below topics will be covered as part of subsequent lectures

16.4) Concurrency with Locks (KA&1dapi€c)

16.5) Concurrency with Timestamps (Xpovoonua)
16.7) Introduction to Crash Recovery (Avakauyn
2 PAAUATWYV)

8-3

Introduction to Transactions
(Elcaywyn oe AocoAnyiec)

* The concept of transaction (doocoAnyia)
provides a mechanism for describing logical units
of database processing.

— Analogy: A transaction isto a DBMS as a process is to an
Operating System.

« Transaction Processing Systems (ZuoThHaTO
Etre€epyaoiagc AocoAnyiwyv) are systems with
large databases and hundreds of concurrent users
executing database transactions

— Examples: Airline Reservations (AepoTropikEC KpaTtnoeig),
Banking (E@appoyéc Tpatredikou Touéa), Stock Markets
(XpnuaTtiotipla), Supermarkets (Y1repayopEqg),

8-4

Introduction to Transactions
(Elcaywyn oe AocoAnyiec)

 Transaction (AoocoAnyia) (Xact), is an atomic (i.e., all-
or-nothing) sequence of database operations (i.e., read-

write operations).

« Itis the DBMS’s abstract view of a user program!

« Atransaction (collection of actions) makes
transformations of system states while preserving the
database consistency (ocuvétreia Baong) ... next slide.

| _ DB in a consistent
DB in aconsistent DB may be in an state

State inconsistent state
during execution
- ~ -~
Execution of a
8-5

Begin transaction T transaction T End transaction T

DB Consistency vs. Trans. Consistency

(2uverrela BA vs. 2uvetreia AocoAnyiag)

« Database Consistency (Zuvétreia Baong)

— A database is in a consistent state if it obeys all of the
Integrity Constraints (Kavéveg AkepaioTntag) defined over it.

— Examples of Integrity Constraints:

Domain Constraints ([Mediou Opiouou): e.g., SID must be integer
Key Constraints (KA&idiou): e.g., no 2 students have the same SID

Foreign Key Constraints (=z€vou KAeidiou): e.g., DepartmentID in
Student must match the DepartmentID in Department’s table.

Single Table Constraints: e.g., CHECK (age>18 AND age<25)
Multiple Table Constraints:
— e.g., Create ASSERTION C CHECK ((SELECT A) + (SELECT B) < 10)

« Transaction consistency (Zuvérreia AoooAnwiag)

— Complements Database consistency by incorporating user
semantics (e.g., onuacioAoyia OTTw opileTal aTtrod ToV XPHoTn)

— T.C is the user’s responsibility (e.g., previous example)

8-6

Introduction to Transactions
(Elcaywyn oe AocoAnyiec)

* One way of specifying the transaction boundaries is by
specifying explicit BEGIN TRANSACTION and END
TRANSACTION statements in an application program

— Transaction Example in MySOL
START TRANSACTION:
SELECT @A:=SUM(salary) FROM tablel WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

— Transaction Example in Oracle (similar with SOL Server)

* When you connect to the database with sqglplus (Oracle command-line utility that runs
SQL and PL/SQL commands interactively or from a script) a transaction begins.

« BEGIN | SET AUTOCOMMIT OFF | insert... ; insert... ; update... ; commit; exit; END,;
— Transaction Example in C: See Next Slide
Note that the given example has no explicit START/END

statements as the whole program is essentially 1 transaction (as
the previous example with Oracle’s sqlplus utility.

8-7

Transaction Consistency
Example with Embedded SQL

. Consider an airline reservation example with the relations*:
« The below example shows a Transaction FLIGHT(FNO, DATE, SRC, DEST, STSOLD)

constraint (not captured by ICs) CUST(CID, ADDR)

) FC(FNO, DATE, CID, SPECIAL)
main {

EXEC SQL BEGIN DECLARE SECTION; // define C host program variables (accessible in SQL environment)
char flight_no[6], customer_id[20]; // these host-language variable are prefixed with “:” in SQL statements
char day;

EXEC SQL END DECLARE SECTION,; . .
Sell a seat on a given flight and date by

scanf(“%s %d %s”, flight_no, day, customer_id); increasing the SeaTSOLD attribute
EXEC SQL UPDATE FLIGHT/ Store the sale in the Flight-
SET STSOLD = STSOLD +1 Customer table
WHERE FNO = :flight_no AND DATE = :day;

———————————————— DB-in-inconsistent-state---------A4------

If only the first action is executed then
e SQUINSERT spEuAL)-/ relations FLIGHT and FC will be inconsistent
VALUES(:flight_no, :day, :customer_id, null); 9Although not a Concur_rent prog_ram’ we

need to ensure transaction consistency
printf(“Reservation completed”); (aII-or-nothing)!

return(0); :
© * We make some simplifying assumptions regarding the schema and constraints 8-8

Introduction to Transactions
(Elcaywyn oe AocoAnyieg)

Things get even more complicated if we have several
DBMS programs (transactions) executed concurrently.

Why do we need concurrent executions?

— It is essential for good DBMS performance!

- Disk accesses are frequent, and relatively slow
- Overlapping I/0O with CPU activity increases throughput and response time.

What is the problem with concurrent transactions?

— Interleaving (MapeuBaAAovTtag) transactions might lead the system

to an inconsist state (like previous example):

« Scenario: A Xact prints the monthly bank account statement for a user U (one bank
transaction at-a-time).Before finalizing the report another Xact withdraws $X from user U.

* Result: Although the report contains an updated final balance, it shows nowhere the bank
transaction that caused the decrease (unrepeatable read problem, explained next)

A DBMS guarantees that these problems will not arise.

— Users are given the impression that the transactions are executed

sequentially (oesipraka), the one after the other. 8.9

Introduction to Transactions
(Elcaywyn oe AocoAnyiec)

State Diagram for Transaction Execution
(Alaypappua KO(RTE%GTdoswv via Tnv EkTEAeon AocoAnyiwv)

WRITE

NoAC i\J TRANESP:\?:HON /"f____'
TRANSACTION - COMMIT —
= ACTIVE PARTIALLY > COMMITTED)

LTV " _COMMITTED (COMMITTED)
_ _ SN TN
Active: When Xact begins Q‘ED/ >\ JERMINATED J

Partially Committed: When Xact ends, several recovery checks take place
making sure that the DB can always recover to a consistent state

Failed: If Xact aborts for any reason (rollback might be necessary to return
the system to a consistent state)

Committed: After partial committed checks are successful. Once committed

we never return (roll-back) to a previous state 8.10

The ACID properties
(O11016TNTEC ACID)

What are the fundamental (BepeAiwdeIg) properties that a
DBMS must enforce so that data remains consistent (in
the face of concurrent access & failures)?

A DBMS needs to enforce four (4) properties:
Atomicity — Consistency — Isolation - Durability
ATOMIKOTNTO — ZUVETTEIA - ATTONOVWON — MovipéTtnTta

Jim Gray defined the key transaction properties of a reliable
system in the late 1970.

Acronym ACID was coined by Reuter and Haerder in 1983

- Reuter, Andreas; Haerder, Theo "Principles of Transaction-Oriented
Database Recovery". ACM Computing Surveys (ACSUR) 15 (4): pp.

287-317, 1983 i

The ACID properties

(O11016TNTEC ACID)
1. Atomicity (Atopikétnta): All or nothing!

- An executing transaction completes in its entirety (i.e., ALL) or it is
aborted altogether (i.e., NOTHING).

- e.g., Transfer_Money(Amount, X, Y) means i) DEBIT(Amount, X);
i) CREDIT(Amount, Y). Either both take place or none.

- Reasons for Incomplete Transactions
- Anomaly Detection (e.g., Constraint violation) or System Crash (e.g., power)

- Responsibility: Recovery Manager (use log file to record all writes)

2. Consistency (2ZuveTtrela): Start & End Consistent!

- If each Transaction is consistent, and the DB starts consistent,
then the Database ends up consistent.

- Ifatransaction violates the database’s consistency rules, the
entire transaction will be rolled back and the database will be
restored to a state consistent with those rules

- Responsibility: User (DB only enforcing IC rules) 8-12

The ACID properties
(O11016TNTEC ACID)

3. Isolation (AtTrTopévwon): See your own data only!

- An executing transaction cannot reveal its (incomplete) results
before it commits.

- Consequently, the net effect is identical to executing all
transactions, the one after the other in some serial order.

. e.g., if two transactions T1 and T2 exists, then the output is guaranteed to be
either T1, T2 or T2, T1 (The DBMS cannot guarantee the order of execution, that
is the user’s job!) ... see example next page

- Responsibility: Lock Manager (i.e., Concurrency Control Manager)

4. Durability (MovipoétnTta). DBMS Cannot Regret!

— Once a transaction commits, the system must guarantee that the
results of its operations will never be lost, in spite of subsequent
failures.

— Responsibility: Recovery Manager (use log file to record all writes)

8-13

Notation for Transactions
(2Znueloypaia yia AocoAnWieg)

* Actions executed by a transaction include reads
and writes of database objects

« Notation

— R.(O): The Transaction T Reads an Object O.

— W(O): The Transaction T Writes an Object O.
« When Transaction is clear in context we shall omit the T
 Although written, the data is in really pending until committed.

— Commit;: Complete successfully writing data to disk
— Abort;: Terminate and undo all carried out actions

« Assumptions

— Transaction Communication only through the DBMS

— Database Objects: Static Collection (i.e., tables, etc. not o1l
added/removed -... dynamic case more-complex) '

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpoypauua)

« Schedule (XpovoTtrpoypauua)
— List of actions (read, write, abort, or commit) from a set
(opadag) of transactions (T1, T2, ...) where the order
of actions inside each transaction does not change.

* e.g., If T1=R(A), W(A) then W(A), R(A) is not the same schedule
(as it is in opposite order)

Schedule * Note that the DBMS might carry out

T | T2 other actions as well (e.g., evaluate

----------------- arithmetic expressions) .

R(A) + Yet these do not affect the other

W(A) . . .
R(B) transactions, thus will be omitted from
w(B) our presentation

ngg * We shall introduce Commits/Aborts

subsequently. 8.15

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpoypauua)

« Serial Schedule (Zip1akd XpovoTrpoypauua)

— A schedule in which the different transactions are NOT
Interleaved (i.e., transactions are executed from start to
finish one-by-one)

Serial Schedule Serial Schedule
T1 T2
M | N N! Possible
R(B) Serial Schedules,
\F,QV(EAX) W(B) where N the
R(B) R(A) number of Xacts
W(B) W(A)

8-16

Problems due to Interleaved Xact
(MpoBARuarta atrd Tnv MNapeuBoAry AoocoAnyiwv)

Problems that arise when interleaving Transactions.
 Problem 1: Reading Uncommitted Data (WR Conflicts)

« Reading the value of an uncommitted object might yield an inconsistency
— Dirty Reads or Write-then-Read (WR) Conflicts. W
— In Greek: ACUVETTEIC avayVvWOEIG R

 Problem 2: Unrepeatable Reads (RW Conflicts)

» Reading the same object twice might yield an inconsistency
— Read-then-Write (RW) Conflicts (1 Write-After-Read) R
— In Greek: Mn-eTavaAqWPINEC AVAYVWOEIC
 Problem 3: Overwriting Uncommitted Data (WW Conflicts)
« Overwriting an uncommitted object might yield an inconsistency
— Lost Update or Write-After-Write (WW) Conflicts. W
— In Greek: ATTWAEIEC EVNUEPWOEWV W
 Remark: There is no notion of RR-Conflict as no object is changed g,

W

Reading Uncommitted Data (WR Conflicts)
(ACUVETTEIC avayVWOEIC)

‘Reading the value of an uncommitted object yields an inconsistency”

« To illustrate the WR-conflict consider the following problem:
T1: Transfer $100 from Account A to Account B
T2: Add the annual interest of 6% to both A and B.

(Correct)Serial Schedule (Correct)Serial Schedule WR-Conflict (Wrong)
Trace T1 T2 Trace T1 T2 Trace T1 T2
R(A) R(A) R(A)

A=A-100 W(A) A=A*1.06 W(A) A=A-100 W(A)—| Qi Read

R(B) R(B) R(A)
B=B+100 W(B) B=B*1.06 W(B) A=A*1.06 W(A)
R(A) R(A) R(B)
A=A*1.06 W(A) A=A-100 W(A) B=B*1.06 W(B)
R(B) R(B) R(B)
B=B*1.06 W(B) B=B+100 W(B) B=B+100 W(B)

Problem caused by the WR-Conflict? Account B was credited with
the interest on a smaller amount (i.e., 100$ less), thus the result is not
equivalent to the serial schedule 8-18

Unrepeatable Reads (RW Conflicts)
(Mn-etTavaANWIMEC avayvwaoeElQ)

‘Reading the same object twice yields an inconsistency”

« To illustrate the RW-conflict consider the following problem:
T1: Print Value of A
T2: Decrease Global counter A by 1.

RW-Conflict (Wrong)

Trace T1 T2
A=10 R(A) W\rita—after—Read
A=10 WR(A) Note that if | read at
A=A-1=9 W(A)

A=0 R(A)\\this point we would

see 9 rather than
10 (i.e., read is
unrepeatable)

Problem caused by the RW-Conflict?
Although the “A” counter is read twice within T1 (without
any intermediate change) it has two different values
(unrepeatable read)! ... what happens if T2 aborts?

) 8-19
= Fl-has 'shown an: incorrect result!

Overwriting Uncommitted Data (WW Conflicts)
(ATTWAEIEC EVNUEPWOEWV)

“Overwriting an uncommitted object yields an inconsistency”

To illustrate the WW-conflict consider the following problem:
Constr: Salary of employees A and B must be kept equal
T1: Set Salary to 1000; T2: Set Salary equal to 2000

(Correct)Serial Schedule (Correct)Serial Schedule WW-Conflict (Wrong)
Trace T1 T2 Trace T1 T2 Trace T1 T2
R(A) R(A) R(A)

A=1000 W(A) A=2000 W(A) A=1000 W(A)\ Lost Update

R(B) R(B) \R(A)
B=1000 W(B) B=2000 W(B) A=2000 W(A)
R(A) R(A) R(B)
A=2000 W(A) A=1000 W(A) B=2000 , W(B)
R(B) R(B) R(B) Lost Update
B=2000 W(B) B=1000 W(B) B=1000 W(B

Problem caused by the WW-Conflict?
Employee “A” gets a salary of 2000 while employee “B” gets a salary of 1000,

thus result is not equivalent to the serial schedule! 8.0

Lecture Roadmap
Transactions and Schedules

 16.2) Transactions and Schedules (Xpovotrpoypauua)
— Serial Schedule (Zeipiaké Xpovotrpoypauua) ... one after the other...
— Complete Schedule (MARpeg Xpovotrpoypappua) ... with Commit, Abort
« 17.1) Serializability (ZeipiotroincipoTnTa)
— “Correctness Measure” of some Schedule

— Why is it useful? It answers the question: “Will an interleaved
schedule execute correctly”

— l.e., a Serializable schedule will execute as correctly as a serial
schedule ... butin an interleaved manner!

« 17.1) Recoverability (ETTavagepoiuotnra)
— “Recoverability Measure” of some Schedule.

— Why is it useful? It answers the question: “Do we need to rollback

a some (or all) transactions in an interleaved schedule after some
Failure (e.g., ABORT)”

— |.e., In a Recoverable schedule no transaction needs to be rolled

back (S1adikacia eTICTPOPNRS) once committed! 8.95

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpoypauua)

« Serial Schedule (Zip1akd XpovoTrpoypauua)

— A schedule in which the different transactions are NOT
Interleaved (i.e., transactions are executed from start to
finish one-by-one)

Serial Schedule Serial Schedule
T T2
T 2o N! Possible
R(B) Serial Schedules,
\F,QV(EAX) W(B) where N the
R(B) R(A) Tnumber_ of
W(B) W(A) ransactions

8-27

Transactions and Schedules
(AoocoAnyiec Kal XpovoTTpoypauua)
« Complete Schedule (NMARpeg XpovotTTpoypauua)
— A schedule that contains either a commit

(oAokAnpwon doocoAnwiag) or an abort (HaTaiwon
doocoAnyiag) action for EACH transaction.*

Complete Schedule Complete Schedule Complete (Serial) Schedule

R(A) R(A) R(A)
R(B) W(A) W(A)
W(A) R(B) Commit
| W(B) Commit R(B)
Commit W(B) W(B)
Abort Abort Abort

* Note: consequently, a complete schedule will not contain any
active transactions at the end of the schedule 828

Transactions and Schedules
(AoocoAnwiec Kal XpovoTTpoypauua)

Interleaved Schedules of transactions improve
performance
— Throughput (puBuarrodoon). More Xacts per seconds; and

— Response Time (xpovog amrokpiong): A short transaction
will not get stuck behind a long-running transaction

Yet it might lead the DB to an inconsistent state as
we have shown

Serial schedule (ociplakd XpovoTTPOYPANMQ) IS
slower but guarantees consistency (correctness)

We seek to identify schedules that are:

— As fast as interleaved schedules.

— As consistent as serial schedules
8-29

Transactions and Schedules
(AoocoAnwiec Kal XpovoTrpoypauua)

« We shall now characterize different schedules based on the
following two properties:

A. Based on Serializability (ZeipiotroincipoTnTa)
« We shall ignore Commits and Aborts for this section

Characterize which schedules are correct when

concurrent transactions are executing.
« Conflict Serializable Schedule (2eipiotToincipéTNTA
2UYKPOUOEWV)
 View Serializable Schedule (Zeipiotroinoipétnta Owewv)
B. Based on Recoverability (ETrava@epoipoTnTa)
Commits and Aborts become important for this section!

Characterize which schedules can be recovered and how easily.
« Recoverable Schedule (ETTava@Epaipo XpovoTTpOoypauua).
« Cascadeless schedule (Xpovotrp. Xwpig 0100100evN avakANgyy,
o LUStrict'Schedules (AuoTnpo XpovoTrpoypaupa).

Conflicting Actions

Schedules based on:
Serializability

(Zuykpououeveg MNpageig)

« Conflicting Actions (Zuykpouopueveg MNMpageig)

Two or more actions are said to be in conflict If:

— The actions belong to different transactions.

— At least one of the actions is a write operation.

— The actions access the same object (read or write).
 The following set of actions is conflicting: ;%X) e

T1:R(X), T2:W(X), T3:W(X) Ty
 While the following sets of actions are not:

T1:R(X), T2:R(X), T3:R(X) /I No Write on same object

T1:R(X), T2:W(Y), T3:R(X) /l No Write on same object

W(X)

8-31

Characterizing

Schedules based on:

Serializability
Recoverability

Example:

Conflict Equivalence
(looduvauia Zuykpouoewv)

« Conflict Equivalence (looduvauia ZUuykpoUoEewyV)

The schedules S1 and S2 are said to be conflict-equivalent
If the following conditions are satisfied.

— Both schedules S1 and S2 involve the same set of transactions
(including ordering of actions within each transaction).

— The order (&1aragn) of each pair of conflicting actions in S1 and
S2 are the same.

 Why is the order of Conflicts important? If two conflicting operations
are applied in different orders, the net effect can be different on the
database or on other transactions in the schedule. See example below:

R(A)
W(A)

NOT Conflict
Equivalent to:

> > >

=5
=A+1=6
=6

A=6
A=A+1=7
(Alth. Result
still same)

T1
Ordeéerof
conflictis
different

4

R(A)
W(A)

NOT Conflict T1 T2

Equivalentto: ___________|_____________
A=5 R(A) Order and
A=5 7 R(A) conflicts is
A=A+1=6 W(A< different
A=A+1=6 “W(A)
Now Wrong

Result! 8-32

* Note that non-conflicting operations can arbitrary be swapped around without compromising the order.

s CONFlICt Serializabllity

Schedules based on:

Serializability V4 re
recoveratiiy (2 EIPIOTTOINCIMOTNTA ZUYKPOUTGEWV)

e Conflict Serializability (Z&1p10TTOINCINO ZUYKPOUOEWV)

When the schedule is conflict-equivalent (1Ic00UvVaUO CUYKPOUCGEWV) t0
some (any!) serial schedule.

Serializable == Conflict Serializable
(that definition is in some textbooks different)

Serial Schedule Serializable Schedule A Serializable Schedule B
T1 T2 T1 T2 T1 T2
R(A) R(A) ‘on(f)lzgtesr s;me order of conflicts| ~ R(A)
W(A W(A) \go 1 T2 same to TZ;le/W(A)
R(B) R(A) R(A)
wE) [\ W(A) R(B)
\ R(A) R(B) /W(B)
\W(A) W(B) W(A)/
R(B) R R(B) R(B)
W(B) W(B) W(B)

8-33

s CONFlICt Serializabllity

Schedules based on:
Serializability

recoeraiiy (LEIPIOTTOINCIMOTNTA ZUYKPOUTEWV)

 Why Is Conflict Serializability important?

 We have already said that any serial schedule leaves the

DB in a consistent (correct) state, but is inefficient
— i.e.,, T1; T2 is as correct as T2; T1 (although they might have a different outcome).

Serializable !'= Serial: NOT the same thing
* Being Serializable implies:
A.That the schedule is a correct schedule.
— It will leave the database in a consistent state.

— The interleaving is appropriate and will result in a state
as If the transactions were serially executed.

B.That a schedule is a efficient (interleaved) schedule
— That parameter makes it better than Serial ©!

8-34

e | €StING fOr Serializabllity

Schedules based on:
Serializability

oy ((EAEYXOG ZEIPIOTTOINCIMOTNTOG)

 How can we test If a schedule is Conflict

Serializable?

— There is a simple algorithm detailed next (that is founded on a
Precedence Graph)

 Does the DBMS utilizes this algorithm? NO
— We detall it only to gain a better understanding of the definitions.

 Why is the DBMS not using it?

— Serializability is hard to check at runtime

« Difficult to determine beforehand how the operations in a schedule will
be interleaved (as it depends on the OS)

« Subsequently, we will see that a DBMS utilizes a set of
protocols (e.g., 2PL or other Concurrency Control
techniques w/out locking), which guarantee that a
schedule is always serializable, 8-35

Precedence Graph

Schedules based on:
Serializability

(IFpdepoc MNpotepaldTNTAC)

« Why is it useful? To find if a schedule is Conflict Serializable
« A Precedence Graph (Fpagog lNpotepaidéTnTag) for a schedule S
contains:
— A node for each transaction in S

— An arch from T; to T;, if an action of T; precedes (mrponyeitai) and conflicts
(ouykpouetal) with one of T;’s actions.

T1 T2 T3 Precedence Graph
R(A
(A) *W(A)
J \
W(A) J Cycle exists!
\\

* A schedule S is conflict serializable if and only if its
precedence graph is acyclic.
— The above schedule is not Conflict Serializable!

(0]
1

w

(o))

Characterizing

Schedules based on:

Serializability
Recoverability

Time

Transaction T,

Transaction T,

Transaction T,

read_item(X):
write_item(X\
Y

read_item(Y);
read_item(Z);

write_item(Y):

/write_item(Z};
_item(Z);
read_item(Y);
write_item(Y) :\K read_item(Y);
write_item(Y);
Y read_item(X); \
write_item(X);
Write_item(z)
Schedule F

Conflict Serializability Testing
(EAgyxoc 2€1p10TToINCIPOTNTAG ZUYKPOUCEWV)

Precedence Graph

@ Cycles exist!

Above schedule is NOT Conflict Serializable!
Although efficient (interleaved) the above might
NOT produce a correct result!

8-37

«wceca |[NEFOAUCtiON to Recoverability

Schedules based on:

iy (Eicaywyn otnv ETTavagepoipodtnta)

So far we have characterized schedules based on
serializability (oeiplotroincipyoTnTa), I.€.,
correctness.

Now It Is time to characterize schedules based on

recoverability (eTrava@epoInoTNTA)

Why is this important?

— For some schedules it Is easier to recover from
transaction failures than others.

In summary, a Recoverable Schedule

(ETravag@epoipo Xpovotrpoypauua) is a

schedule where no transaction needs to be rolled

back (d1adikacia eTICTPOPNG) once committed.

Commit/Abort points now become quite important!

8-42

Characterizing
Schedules based on:

Recoverable Schedule

e - (ETTava@Epaiuo XpovoTTpoypauua)

 Recoverable Schedule (ETravag@époipo

XpovoTTpoypapuua)

— A schedule S is recoverable If no transaction
T In S commits until all transactions T’, that
have written an item that T reads, have

committed.

* Rule: In other words, the parents of dirty reads need to
commit before their children can commit

Consider the
Following
schedule:

T1

12

R(X)

W(X)\dAR(X)

R(Y)

T1 should have committed first!

Abort

irty read

W(X)
Commit

Is this schedule recoverable?
Answer: NO

Why NOT recoverable?

* Because T2 made a dirty read and
committed before T1 ... next slide

explains why this is a problem ...
8-43

Recoverable Schedule

Schedules based on:

il ETTAVAQPEPTINO XPOVOTTPOYPAUMA)

« But why iIs the schedule Nonrecoverable (Mn-
ETTAVAPEPTIMNO)?
* Because when the recovery manager rolls
back (step a) T1 then A gets its Initial value.

 But T2 has already utilized this wrong value
and committed something to the DB

* The DB is consequently in an inconsistent

state! T1L [T2
5\,%())\dirty read
=\ R(X)

R(Y)

W(X) . B) Now DB is inconsistent!
. Commit ecause X was committed based
a) Roll back™ Abort on T1’s aborted transaction)

Nonrecoverable

8-44

Recoverable Schedule

Schedules based on:

il ETTAVAQPEPTINO XPOVOTTPOYPAUMA)

« How can we make the Schedule Recoverable?
Initial Unrecoverable Schedule

T1 T2
o dii d
wx) diirty rea
*R(X)
R(Y)
wx) Nonrecoverable
Commit
Abort
Recoverable Schedule A Recoverable Schedule B
T1 T2 T1 T2
\IT\/((XX)) dirty read R(X)
R(X)
\k R(X) < W(X) A .
R(Y) R(Y) Not Seriplizable
W(X) W(X) (order of conflicting actions has
< Abort Commit changed)
Commit Abort
Commit after parent of dirty read Remove Dirty Read

8-45

Recoverable Recoverable

aaraceriznsOther Schedules based on Recoverability

Schedules based on:

o=z (AAAO XpovoTTpoypapuaTa Baon ETravagepoiudtnTag)

* There are more strict types of Schedules
(based on the Recoverability properties)

— Cascadeless schedule (Xpovotrpoypappa Xwpeig
O01ad100uEVN avAKANoN):

(or Schedule that Avoids Cascading Rollbacks)
 Refers to cases where we have aborts.

— Strict Schedules (AucTnpoé XpovoTrpoypoauua)
* These schedules are very simple to be recovered!
* Thus, the DBMS prefers this class of Schedules.

All schedules

Recoverable

Avoid Cascading Aborts
Strict

Serial

8-46

s Cascadeless Schedule

Serializability

recoverabiit{ XPOVOTTPOYPOAMMA XWpPIig O1ad100HEVN avakAnon)

 Cascadeless schedule (XpovoTrpoypauua XWEIG
O100160uevn avakAnon): or Schedule that Avoids
Cascading Rollbacks)
— One where arollback does not cascade to other Xacts
— Why is this necessary? Rollbacks are Costly!

— How can we achieve it? Every transaction reads only
the items that are written by committed transactions.

T1 T2
R(X) .
W(X) \az\dlrty re
T R(X)
R(Y)
W(X)
b) Roll back W(Y) c) (Cascade)
Abort We need to Roll
Commit back T2 as well!

NOT Cascadeless (but Recoverable) o7

weee — Cascadeless Schedule

Serializability

recoverab i XPOVOTTPOYPOAHMMA XWpPig O100100HEVN avaKAnon)

* Let us turn the previous example into a
Cascadeless Schedule

— Recall, in order to get a Cascadeless Schedule, every
transaction must read only committed data

Cascadeless Schedule

T1

T2

R(X)
W(X)
R(Y)
W(Y)
Abort

b) Now T2 reads the X
value that existed before

a) Roll back

All schedules

Recoverable

Avaid Cascadina Ahonts
Strict

Serial

R(X) T1 started.
W(X)
Commit

Another Cascadeless Schedule

T1 T2
R(X)
W(X)
R(Y)
W(X)
W(Y)
Abort
Commit

... but not strict

8-48

Characterizing St r I Ct SC h ed U I e

Schedules based on:
Serializability

(AuoTnpo XpovoTTpoypauua)

« Strict Schedule (AuocTnpo6 XpovotTpoypauua):
« A scheduleis strict if overriding of uncommitted data is not allowed.

- Formally, if it satisfies the following conditions: 0
|
— Tjreads a data item X after Ti has terminated (aborted or committed) NT

— Tjwrites a data item X after Ti has terminated (aborted or committed)

* Why is this necessary? Eliminates Rollbacks!

— If a schedule is strict, a rollback can be achieved simply by
resetting the Xact variables to the value before its start value,

e.g.,
Cascaé}eless but NOT Strict c¢) Why is this a problem?

T1 | T2 Because X now became again
b) Rollbagke” !/ X=9 9 rather than X=8 or X=5!
X=9 n W(X,5) | |
W(X,8) a) Changing an item that
Commithas not been committed 8.49

Aport Vet (X=85now)

-

weens — Characterizing Schedules «.

Schedules based on:
Serializability

oty (XOPAKTNPICOVTAC XPOVOTTpOYpAuUaTa) .

* Venn Diagram lllustrating the Different ways to
characterize a Schedule based on
Serializability and Recoverability

i . All Schedules
—————— Y
:| View Serializable ||
|
1| " Conflict Serlalizable | I
'---j -L-JL --------- J-----
1 S5 | S6 | Ful:owm':
: [sh| s8 [s9 Avoid Cascading Abort | | |
1| | :‘ | sthet) ||}
N |
: s1d| s11 |s12[seral) | :
II | L |I L\ J !|) |
— / I
L u---------_--_'-_--IJ

8-50

