
8-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 8

Transaction Management Overview

Chapter 17.1-17.6: Elmasri & Navathe, 5ED

Chapter 16.1-16.3 and 16.6: Ramakrishnan & Gehrke, 3ED

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

8-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Overview of Transaction Processing
 (Επισκόπηση Επεξεργασίας Δοσοληψιών)

• We will now focus on Concurrency Control (Έλεγχο

Ταυτοχρονίας) and Recovery Management (Τεχνικές

Ανάκαμψης) in cases of failures

THIS PART THIS PART

8-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
Transaction Management Overview

• 16.0) Introduction to Transactions (Δοσοληψίες ή
Συναλλαγές)

• 16.1) The ACID (Atomicity-Consistency-Isolation-
Durability) Properties

• 16.2) Transactions and Schedules (Χρονοπρόγραμμα)

• 16.3) Concurrent Executions of Transactions
(Ταυτόχρονες Εκτελέσεις Δοσοληψιών) and Problems

• 16.6) Transaction Support in SQL

Below topics will be covered as part of subsequent lectures

• 16.4) Concurrency with Locks (Κλειδαριές)

• 16.5) Concurrency with Timestamps (Χρονόσημα)

• 16.7) Introduction to Crash Recovery (Ανάκαμψη
Σφαλμάτων)

8-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Transactions
(Εισαγωγή σε Δοσοληψίες)

• The concept of transaction (δοσοληψία)

provides a mechanism for describing logical units

of database processing.

– Analogy: A transaction is to a DBMS as a process is to an

Operating System.

• Transaction Processing Systems (Συστήματα

Επεξεργασίας Δοσοληψιών) are systems with

large databases and hundreds of concurrent users

executing database transactions

– Examples: Airline Reservations (Αεροπορικές Κρατήσεις),

Banking (Εφαρμογές Τραπεζικού Τομέα), Stock Markets

(Χρηματιστήρια), Supermarkets (Υπεραγορές),

8-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Transactions
(Εισαγωγή σε Δοσοληψίες)

• Transaction (Δοσοληψία) (Xact), is an atomic (i.e., all-

or-nothing) sequence of database operations (i.e., read-

write operations).

• It is the DBMS’s abstract view of a user program!

• A transaction (collection of actions) makes

transformations of system states while preserving the

database consistency (συνέπεια βάσης) … next slide.

Execution of a

transaction T Begin transaction T End transaction T

DB in a consistent

state

DB in a consistent

state DB may be in an

inconsistent state

during execution

8-6
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

DB Consistency vs. Trans. Consistency
(Συνέπεια ΒΔ vs. Συνέπεια Δοσοληψίας)

• Database Consistency (Συνέπεια Βάσης)

– A database is in a consistent state if it obeys all of the

Integrity Constraints (Κανόνες Ακεραιότητας) defined over it.

– Examples of Integrity Constraints:

• Domain Constraints (Πεδίου Ορισμού): e.g., SID must be integer

• Key Constraints (Κλειδιού): e.g., no 2 students have the same SID

• Foreign Key Constraints (Ξένου Κλειδιού): e.g., DepartmentID in

Student must match the DepartmentID in Department’s table.

• Single Table Constraints: e.g., CHECK (age>18 AND age<25)

• Multiple Table Constraints:

– e.g., Create ASSERTION C CHECK ((SELECT A) + (SELECT B) < 10)

• Transaction consistency (Συνέπεια Δοσοληψίας)

– Complements Database consistency by incorporating user

semantics (e.g., σημασιολογία όπως ορίζεται από τον χρήστη)

– T.C is the user’s responsibility (e.g., previous example)

8-7
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Transactions
(Εισαγωγή σε Δοσοληψίες)

• One way of specifying the transaction boundaries is by

specifying explicit BEGIN TRANSACTION and END

TRANSACTION statements in an application program

– Transaction Example in MySQL

START TRANSACTION;

SELECT @A:=SUM(salary) FROM table1 WHERE type=1;

UPDATE table2 SET summary=@A WHERE type=1;

COMMIT;

– Transaction Example in Oracle (similar with SQL Server)
• When you connect to the database with sqlplus (Oracle command-line utility that runs

SQL and PL/SQL commands interactively or from a script) a transaction begins.

• BEGIN | SET AUTOCOMMIT OFF | insert... ; insert... ; update... ; commit; exit; END;

– Transaction Example in C: See Next Slide

 Note that the given example has no explicit START/END

statements as the whole program is essentially 1 transaction (as

the previous example with Oracle’s sqlplus utility.

8-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transaction Consistency
Example with Embedded SQL

• The below example shows a Transaction

 constraint (not captured by ICs)

main {

…

 EXEC SQL BEGIN DECLARE SECTION; // define C host program variables (accessible in SQL environment)

 char flight_no[6], customer_id[20]; // these host-language variable are prefixed with “:” in SQL statements

 char day;

 EXEC SQL END DECLARE SECTION;

 scanf(“%s %d %s”, flight_no, day, customer_id);

 EXEC SQL UPDATE FLIGHT

 SET STSOLD = STSOLD + 1

 WHERE FNO = :flight_no AND DATE = :day;

 EXEC SQL INSERT

 INTO FC(FNO, DATE, CID, SPECIAL);

 VALUES(:flight_no, :day, :customer_id, null);

 printf(“Reservation completed”);

 return(0);

}

Consider an airline reservation example with the relations*:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD)

CUST(CID, ADDR)

FC(FNO, DATE, CID, SPECIAL)

Sell a seat on a given flight and date by

increasing the SeaTSOLD attribute

Store the sale in the Flight-

Customer table

If only the first action is executed then

relations FLIGHT and FC will be inconsistent

 Although not a concurrent program, we

need to ensure transaction consistency

(all-or-nothing)!

* We make some simplifying assumptions regarding the schema and constraints

DB in inconsistent state

8-9
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Transactions
(Εισαγωγή σε Δοσοληψίες)

• Things get even more complicated if we have several

DBMS programs (transactions) executed concurrently.

• Why do we need concurrent executions?

– It is essential for good DBMS performance!
• Disk accesses are frequent, and relatively slow

• Overlapping I/O with CPU activity increases throughput and response time.

• What is the problem with concurrent transactions?

– Interleaving (Παρεμβάλλοντας) transactions might lead the system

to an inconsist state (like previous example):
• Scenario: A Xact prints the monthly bank account statement for a user U (one bank

transaction at-a-time).Before finalizing the report another Xact withdraws $X from user U.

• Result: Although the report contains an updated final balance, it shows nowhere the bank

transaction that caused the decrease (unrepeatable read problem, explained next)

• A DBMS guarantees that these problems will not arise.

– Users are given the impression that the transactions are executed

sequentially (σειριακά), the one after the other.

8-10
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Transactions
(Εισαγωγή σε Δοσοληψίες)

State Diagram for Transaction Execution

 (Διάγραμμα Καταστάσεων για την Εκτέλεση Δοσοληψιών)

Active: When Xact begins

Partially Committed: When Xact ends, several recovery checks take place

making sure that the DB can always recover to a consistent state

Failed: If Xact aborts for any reason (rollback might be necessary to return

the system to a consistent state)

Committed: After partial committed checks are successful. Once committed

we never return (roll-back) to a previous state

8-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The ACID properties
(Οι ιδιότητες ACID)

• What are the fundamental (θεμελιώδεις) properties that a

DBMS must enforce so that data remains consistent (in

the face of concurrent access & failures)?

• A DBMS needs to enforce four (4) properties:

Atomicity – Consistency – Isolation - Durability

Ατομικότητα – Συνέπεια - Απομόνωση – Μονιμότητα

• Jim Gray defined the key transaction properties of a reliable

system in the late 1970.

• Acronym ACID was coined by Reuter and Haerder in 1983

– Reuter, Andreas; Haerder, Theo "Principles of Transaction-Oriented

Database Recovery". ACM Computing Surveys (ACSUR) 15 (4): pp.

287-317, 1983

8-12
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The ACID properties
(Οι ιδιότητες ACID)

1. Atomicity (Ατομικότητα): All or nothing!
– An executing transaction completes in its entirety (i.e., ALL) or it is

aborted altogether (i.e., NOTHING).

– e.g., Transfer_Money(Amount, X, Y) means i) DEBIT(Amount, X);

ii) CREDIT(Amount, Y). Either both take place or none.

– Reasons for Incomplete Transactions

• Anomaly Detection (e.g., Constraint violation) or System Crash (e.g., power)

– Responsibility: Recovery Manager (use log file to record all writes)

2. Consistency (Συνέπεια): Start & End Consistent!
– If each Transaction is consistent, and the DB starts consistent,

then the Database ends up consistent.

– If a transaction violates the database’s consistency rules, the

entire transaction will be rolled back and the database will be

restored to a state consistent with those rules

– Responsibility: User (DB only enforcing IC rules)

8-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The ACID properties
(Οι ιδιότητες ACID)

3. Isolation (Απομόνωση): See your own data only!
– An executing transaction cannot reveal its (incomplete) results

before it commits.

– Consequently, the net effect is identical to executing all

transactions, the one after the other in some serial order.

• e.g., if two transactions T1 and T2 exists, then the output is guaranteed to be

either T1, T2 or T2, T1 (The DBMS cannot guarantee the order of execution, that

is the user’s job!) … see example next page

– Responsibility: Lock Manager (i.e., Concurrency Control Manager)

4. Durability (Μονιμότητα): DBMS Cannot Regret!
– Once a transaction commits, the system must guarantee that the

results of its operations will never be lost, in spite of subsequent

failures.

– Responsibility: Recovery Manager (use log file to record all writes)

8-14
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Notation for Transactions
(Σημειογραφία για Δοσοληψίες)

• Actions executed by a transaction include reads

and writes of database objects

• Notation

– RT(O): The Transaction T Reads an Object O.

– WT(O): The Transaction T Writes an Object O.

• When Transaction is clear in context we shall omit the T

• Although written, the data is in really pending until committed.

– CommitT: Complete successfully writing data to disk

– AbortT: Terminate and undo all carried out actions

• Assumptions
– Transaction Communication only through the DBMS

– Database Objects: Static Collection (i.e., tables, etc. not

added/removed … dynamic case more complex)

8-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transactions and Schedules
(Δοσοληψίες και Χρονοπρόγραμμα)

• Schedule (Χρονοπρόγραμμα)

– List of actions (read, write, abort, or commit) from a set

(ομάδας) of transactions (Τ1, Τ2, …) where the order

of actions inside each transaction does not change.

• e.g., if Τ1=R(A), W(A) then W(A), R(A) is not the same schedule

(as it is in opposite order)

Schedule • Note that the DBMS might carry out

other actions as well (e.g., evaluate

arithmetic expressions) .

• Yet these do not affect the other

transactions, thus will be omitted from

our presentation

• We shall introduce Commits/Aborts

subsequently.

 Τ1 Τ2

 R(A)

W(A)

 R(B)

 W(B)

 R(C)

W(C)

8-16
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transactions and Schedules
(Δοσοληψίες και Χρονοπρόγραμμα)

• Serial Schedule (Σειριακό Χρονοπρόγραμμα)

– A schedule in which the different transactions are NOT

interleaved (i.e., transactions are executed from start to

finish one-by-one)

 Τ1 Τ2

 R(B)

 W(B)

 R(A)

 W(A)

Serial Schedule

N! Possible

Serial Schedules,

where N the

number of Xacts

 Τ1 Τ2

 R(A)

 W(A)

 R(B)

 W(B)

Serial Schedule

8-17
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Problems due to Interleaved Xact
(Προβλήματα από την Παρεμβολή Δοσοληψιών)

Problems that arise when interleaving Transactions.

• Problem 1: Reading Uncommitted Data (WR Conflicts)
• Reading the value of an uncommitted object might yield an inconsistency

– Dirty Reads or Write-then-Read (WR) Conflicts.

– In Greek: Ασυνεπείς αναγνώσεις

• Problem 2: Unrepeatable Reads (RW Conflicts)
• Reading the same object twice might yield an inconsistency

– Read-then-Write (RW) Conflicts (ή Write-After-Read)

– In Greek: Μη-επαναλήψιμες αναγνώσεις

• Problem 3: Overwriting Uncommitted Data (WW Conflicts)
• Overwriting an uncommitted object might yield an inconsistency

– Lost Update or Write-After-Write (WW) Conflicts.

– In Greek: Απώλειες ενημερώσεων

• Remark: There is no notion of RR-Conflict as no object is changed

R

 W

R

W

 R

W

 W

8-18
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Reading Uncommitted Data (WR Conflicts)

 (Ασυνεπείς αναγνώσεις)

• To illustrate the WR-conflict consider the following problem:

 T1: Transfer $100 from Account A to Account B

 T2: Add the annual interest of 6% to both A and B.

 Τ1 Τ2___

 R(A)

 W(A)

 R(B)

 W(B)

 R(A)

 W(A)

 R(B)

 W(B)

Trace

A=A-100

B=B+100

A=A*1.06

B=B*1.06

(Correct)Serial Schedule

 Τ1 Τ2___

 R(A)

 W(A)

 R(B)

 W(B)

 R(A)

 W(A)

 R(B)

 W(B)

Trace

A=A*1.06

B=B*1.06

A=A-100

B=B+100

(Correct)Serial Schedule

 Τ1 Τ2___

 R(A)

 W(A)

 R(A)

 W(A)

 R(B)

 W(B)

 R(B)

 W(B)

Trace

A=A-100

A=A*1.06

B=B*1.06

B=B+100

WR-Conflict (Wrong)

Dirty Read

Problem caused by the WR-Conflict? Account B was credited with

the interest on a smaller amount (i.e., 100$ less), thus the result is not

equivalent to the serial schedule

“Reading the value of an uncommitted object yields an inconsistency”

8-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Unrepeatable Reads (RW Conflicts)

 (Μη-επαναλήψιμες αναγνώσεις)

• To illustrate the RW-conflict consider the following problem:

 T1: Print Value of A

 T2: Decrease Global counter A by 1.

 Τ1 Τ2___

 R(A)

 R(A)

 W(A)

 R(A)

Trace

A=10

A=10

A=A-1=9

A=9

RW-Conflict (Wrong)

Write-after-Read

Problem caused by the RW-Conflict?

Although the “A” counter is read twice within T1 (without

any intermediate change) it has two different values

(unrepeatable read)! … what happens if T2 aborts?

 Τ1 has shown an incorrect result.

“Reading the same object twice yields an inconsistency”

Note that if I read at

this point we would

see 9 rather than

10 (i.e., read is

unrepeatable)

8-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Overwriting Uncommitted Data (WW Conflicts)

 (Απώλειες ενημερώσεων)

• To illustrate the WW-conflict consider the following problem:

 Constr: Salary of employees A and B must be kept equal

 T1: Set Salary to 1000; T2: Set Salary equal to 2000

Problem caused by the WW-Conflict?

Employee “A” gets a salary of 2000 while employee “B” gets a salary of 1000,

thus result is not equivalent to the serial schedule!

“Overwriting an uncommitted object yields an inconsistency”

 Τ1 Τ2___

 R(A)

 W(A)

 R(B)

 W(B)

 R(A)

 W(A)

 R(B)

 W(B)

Trace

A=1000

B=1000

A=2000

B=2000

(Correct)Serial Schedule

 Τ1 Τ2___

 R(A)

 W(A)

 R(B)

 W(B)

 R(A)

 W(A)

 R(B)

 W(B)

Trace

A=2000

B=2000

A=1000

B=1000

(Correct)Serial Schedule

 Τ1 Τ2___

 R(A)

 W(A)

 R(A)

 W(A)

 R(B)

 W(B)

 R(B)

 W(B)

Trace

A=1000

A=2000

B=2000

B=1000

WW-Conflict (Wrong)

Lost Update

Lost Update

8-25
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Roadmap
 Transactions and Schedules

• 16.2) Transactions and Schedules (Χρονοπρόγραμμα)
– Serial Schedule (Σειριακό Χρονοπρόγραμμα) … one after the other…

– Complete Schedule (Πλήρες Χρονοπρόγραμμα) … with Commit, Abort

• 17.1) Serializability (Σειριοποιησιμότητα)
– “Correctness Measure” of some Schedule

– Why is it useful? It answers the question: “Will an interleaved
schedule execute correctly”

– i.e., a Serializable schedule will execute as correctly as a serial
schedule … but in an interleaved manner!

• 17.1) Recoverability (Επαναφερσιμότητα)
– “Recoverability Measure” of some Schedule.

– Why is it useful? It answers the question: “Do we need to rollback
a some (or all) transactions in an interleaved schedule after some
Failure (e.g., ABORT)”

– i.e., in a Recoverable schedule no transaction needs to be rolled
back (διαδικασία επιστροφής) once committed!

8-27
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transactions and Schedules
(Δοσοληψίες και Χρονοπρόγραμμα)

• Serial Schedule (Σειριακό Χρονοπρόγραμμα)

– A schedule in which the different transactions are NOT

interleaved (i.e., transactions are executed from start to

finish one-by-one)

 Τ1 Τ2

 R(B)

 W(B)

 R(A)

 W(A)

Serial Schedule

N! Possible

Serial Schedules,

where N the

number of

Transactions

 Τ1 Τ2

 R(A)

 W(A)

 R(B)

 W(B)

Serial Schedule

8-28
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transactions and Schedules
(Δοσοληψίες και Χρονοπρόγραμμα)

• Complete Schedule (Πλήρες Χρονοπρόγραμμα)

– A schedule that contains either a commit

(ολοκλήρωση δοσοληψίας) or an abort (ματαίωση

δοσοληψίας) action for EACH transaction.*

 Τ1 Τ2

 R(A)

W(A)

 R(B)

Commit

 W(B)

 Abort

Complete Schedule

 Τ1 Τ2

 R(A)

W(A)

Commit

 R(B)

 W(B)

 Abort

Complete (Serial) Schedule

 Τ1 Τ2

 R(A)

 R(B)

W(A)

 W(B)

Commit

 Abort

Complete Schedule

* Note: consequently, a complete schedule will not contain any

active transactions at the end of the schedule

8-29
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transactions and Schedules
(Δοσοληψίες και Χρονοπρόγραμμα)

• Interleaved Schedules of transactions improve

performance

– Throughput (ρυθμαπόδοση): More Xacts per seconds; and

– Response Time (χρόνος απόκρισης): A short transaction

will not get stuck behind a long-running transaction

• Yet it might lead the DB to an inconsistent state as

we have shown

• Serial schedule (σειριακό χρονοπρόγραμμα) is

slower but guarantees consistency (correctness)

• We seek to identify schedules that are:

– As fast as interleaved schedules.

– As consistent as serial schedules

8-30
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Transactions and Schedules

(Δοσοληψίες και Χρονοπρόγραμμα)

• We shall now characterize different schedules based on the

following two properties:

A. Based on Serializability (Σειριοποιησιμότητα)

• We shall ignore Commits and Aborts for this section

 Characterize which schedules are correct when

concurrent transactions are executing.
• Conflict Serializable Schedule (Σειριοποιησιμότητα

Συγκρούσεων)

• View Serializable Schedule (Σειριοποιησιμότητα Όψεων)

B. Based on Recoverability (Επαναφερσιμότητα)
• Commits and Aborts become important for this section!

 Characterize which schedules can be recovered and how easily.

• Recoverable Schedule (Επαναφέρσιμο Χρονοπρόγραμμα).

• Cascadeless schedule (Χρονοπρ. χωρίς διαδιδόμενη ανάκληση).

• Strict Schedules (Αυστηρό Χρονοπρόγραμμα).

8-31
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Conflicting Actions
(Συγκρουόμενες Πράξεις)

• Conflicting Actions (Συγκρουόμενες Πράξεις)

 Two or more actions are said to be in conflict if:

– The actions belong to different transactions.

– At least one of the actions is a write operation.

– The actions access the same object (read or write).

• The following set of actions is conflicting:

 T1:R(X), T2:W(X), T3:W(X)

• While the following sets of actions are not:

 T1:R(X), T2:R(X), T3:R(X) // No Write on same object

 T1:R(X), T2:W(Y), T3:R(X) // No Write on same object

T1 T2 T3

R(X)

 W(X)

 W(X)

Characterizing

Schedules based on:

Serializability

Recoverability

8-32
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

* Note that non-conflicting operations can arbitrary be swapped around without compromising the order.

Conflict Equivalence
(Ισοδυναμία Συγκρούσεων)

• Conflict Equivalence (Ισοδυναμία Συγκρούσεων)

 The schedules S1 and S2 are said to be conflict-equivalent

if the following conditions are satisfied:

– Both schedules S1 and S2 involve the same set of transactions

(including ordering of actions within each transaction).

– The order (διάταξη) of each pair of conflicting actions in S1 and

S2 are the same.

• Why is the order of Conflicts important? If two conflicting operations

are applied in different orders, the net effect can be different on the

database or on other transactions in the schedule. See example below:

Characterizing

Schedules based on:

Serializability

Recoverability

 Τ1 Τ2

 R(A)

 W(A)

 R(A)

 W(A)

Example: Τ1 Τ2

 R(A)

 W(A)

R(A)

W(A)

 Τ1 Τ2

 R(A)

 R(A)

 W(A)

 W(A)

A=5

A=A+1=6

A=6

A=A+1=7

A=5

A=A+1=6

A=6

A=6

A=A+1=7

A=5

A=5

A=A+1=6

A=A+1=6

NOT Conflict

Equivalent to:

NOT Conflict

Equivalent to:

Now Wrong

Result!

(Alth. Result

still same)

Order and

conflicts is

different

Order of

conflict is

different

8-33
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Conflict Serializability
(Σειριοποιησιμότητα Συγκρούσεων)

• Conflict Serializability (Σειριοποιήσιμο Συγκρούσεων)

 When the schedule is conflict-equivalent (ισοδύναμο συγκρούσεων) to

some (any!) serial schedule.

Serializable == Conflict Serializable
(that definition is in some textbooks different)

Serializable Schedule A

 Τ1 Τ2___

 R(A)

 W(A)

 R(A)

 W(A)

 R(B)

 W(B)

 R(B)

 W(B)

 Τ1 Τ2___

 R(A)

 W(A)

 R(A)

 R(B)

 W(B)

 W(A)

 R(B)

 W(B)

Serializable Schedule B

 Τ1 Τ2___

 R(A)

 W(A)

 R(B)

 W(B)

 R(A)

 W(A)

 R(B)

 W(B)

Serial Schedule

Characterizing

Schedules based on:

Serializability

Recoverability

Order of

conflicts same

to T1; T2

Order of conflicts

same to T2;T1

8-34
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Conflict Serializability
(Σειριοποιησιμότητα Συγκρούσεων)

• Why is Conflict Serializability important?

• We have already said that any serial schedule leaves the

DB in a consistent (correct) state, but is inefficient
– i.e., T1; T2 is as correct as T2; T1 (although they might have a different outcome).

Serializable != Serial: NOT the same thing

• Being Serializable implies:

A.That the schedule is a correct schedule.

– It will leave the database in a consistent state.

– The interleaving is appropriate and will result in a state

as if the transactions were serially executed.

B.That a schedule is a efficient (interleaved) schedule

– That parameter makes it better than Serial !

Characterizing

Schedules based on:

Serializability

Recoverability

8-35
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Testing for Serializability
(Έλεγχος Σειριοποιησιμότητας)

• How can we test if a schedule is Conflict

Serializable?
– There is a simple algorithm detailed next (that is founded on a

Precedence Graph)

• Does the DBMS utilizes this algorithm? NO

– We detail it only to gain a better understanding of the definitions.

• Why is the DBMS not using it?

– Serializability is hard to check at runtime

• Difficult to determine beforehand how the operations in a schedule will

be interleaved (as it depends on the OS)

• Subsequently, we will see that a DBMS utilizes a set of

protocols (e.g., 2PL or other Concurrency Control

techniques w/out locking), which guarantee that a

schedule is always serializable.

Characterizing

Schedules based on:

Serializability

Recoverability

8-36
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

T2

Precedence Graph
(Γράφος Προτεραιότητας)

• Why is it useful? To find if a schedule is Conflict Serializable

• A Precedence Graph (Γράφος Προτεραιότητας) for a schedule S

contains:

– A node for each transaction in S

– An arch from Ti to Tj, if an action of Ti precedes (προηγείται) and conflicts

(συγκρούεται) with one of Tj’s actions.

• A schedule S is conflict serializable if and only if its

precedence graph is acyclic.

– The above schedule is not Conflict Serializable!

T1

Precedence Graph

Characterizing

Schedules based on:

Serializability

Recoverability

 Τ1 Τ2 T3

 R(A)

 W(A)

 W(A)

 W(A)

T3

Cycle exists!

8-37
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Conflict Serializability Testing
(Έλεγχος Σειριοποιησιμότητας Συγκρούσεων)

Characterizing

Schedules based on:

Serializability

Recoverability

T2 T1

Precedence Graph

T3

Above schedule is ΝΟΤ Conflict Serializable!

Although efficient (interleaved) the above might

NOT produce a correct result!

Cycles exist!

Write_item(z)

8-42
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Introduction to Recoverability
(Εισαγωγή στην Επαναφερσιμότητα)

• So far we have characterized schedules based on
serializability (σειριοποιησιμότητα), i.e.,
correctness.

• Now it is time to characterize schedules based on
recoverability (επαναφερσιμότητα)

• Why is this important?

– For some schedules it is easier to recover from
transaction failures than others.

• In summary, a Recoverable Schedule
(Επαναφέρσιμο Χρονοπρόγραμμα) is a
schedule where no transaction needs to be rolled
back (διαδικασία επιστροφής) once committed.

• Commit/Abort points now become quite important!

Characterizing

Schedules based on:

Serializability

Recoverability

8-43
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recoverable Schedule
(Επαναφέρσιμο Χρονοπρόγραμμα)

• Recoverable Schedule (Επαναφέρσιμο
Χρονοπρόγραμμα)

– A schedule S is recoverable if no transaction
T in S commits until all transactions T’, that
have written an item that T reads, have
committed.

• Rule: In other words, the parents of dirty reads need to
commit before their children can commit

Characterizing

Schedules based on:

Serializability

Recoverability

 Τ1 Τ2
 R(X)

 W(X)

 R(X)

 R(Y)

 W(X)

 Commit

Abort

dirty read

Consider the

Following

schedule:

Is this schedule recoverable?
Answer: NO

Why NOT recoverable?
• Because T2 made a dirty read and

committed before T1 … next slide

explains why this is a problem …

T1 should have committed first!

8-44
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recoverable Schedule

(Επαναφέρσιμο Χρονοπρόγραμμα)
Characterizing

Schedules based on:

Serializability

Recoverability

 Τ1 Τ2
 R(X)

 W(X)

 R(X)

 R(Y)

 W(X)

 Commit

Abort

dirty read

• But why is the schedule Nonrecoverable (Μη-
επαναφέρσιμο)?

• Because when the recovery manager rolls
back (step a) T1 then A gets its initial value.

• But T2 has already utilized this wrong value
and committed something to the DB

• The DB is consequently in an inconsistent
state!

a) Roll back

B) Now DB is inconsistent!

(because X was committed based

on T1’s aborted transaction)

Nonrecoverable

8-45
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Recoverable Schedule

(Επαναφέρσιμο Χρονοπρόγραμμα)
Characterizing

Schedules based on:

Serializability

Recoverability

dirty read

• How can we make the Schedule Recoverable?

Initial Unrecoverable Schedule

 Τ1 Τ2
 R(X)

 W(X)

 R(X)

 R(Y)

 W(X)

Abort

 Commit

dirty read

Recoverable Schedule A

Commit after parent of dirty read

 Τ1 Τ2
 R(X)

 W(X)

 R(X)

 R(Y)

 W(X)

 Commit

Abort

 Τ1 Τ2
 R(X)

 R(X)

W(X)

R(Y)

 W(X)

 Commit

Abort

Recoverable Schedule B

Remove Dirty Read

Nonrecoverable

Recoverable Recoverable

Not Serializable
(order of conflicting actions has

changed)

8-46
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Other Schedules based on Recoverability
(Άλλα χρονοπρογράμματα βάση Επαναφερσιμότητας)

• There are more strict types of Schedules
(based on the Recoverability properties)
– Cascadeless schedule (Χρονοπρόγραμμα χωρίς

διαδιδόμενη ανάκληση):

 (or Schedule that Avoids Cascading Rollbacks)

• Refers to cases where we have aborts.

– Strict Schedules (Αυστηρό Χρονοπρόγραμμα)
• These schedules are very simple to be recovered!

• Thus, the DBMS prefers this class of Schedules.

Characterizing

Schedules based on:

Serializability

Recoverability

All schedules

 Recoverable

Avoid Cascading Aborts

Strict

Serial

8-47
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

NOT Cascadeless (but Recoverable)

Cascadeless Schedule
(Χρονοπρόγραμμα χωρίς διαδιδόμενη ανάκληση)

• Cascadeless schedule (Χρονοπρόγραμμα χωρίς
διαδιδόμενη ανάκληση): or Schedule that Avoids
Cascading Rollbacks)
– One where a rollback does not cascade to other Xacts

– Why is this necessary? Rollbacks are Costly!

– How can we achieve it? Every transaction reads only
the items that are written by committed transactions.

Characterizing

Schedules based on:

Serializability

Recoverability

 Τ1 Τ2
 R(X)

 W(X)

 R(X)

R(Y)

 W(X)

W(Y)

Abort

 Commit

a) dirty read

b) Roll back c) (Cascade)

We need to Roll

back T2 as well!

8-48
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

All schedules

Recoverable

Avoid Cascading Aborts

Strict

Serial

Cascadeless Schedule
(Χρονοπρόγραμμα χωρίς διαδιδόμενη ανάκληση)

• Let us turn the previous example into a
Cascadeless Schedule
– Recall, in order to get a Cascadeless Schedule, every

transaction must read only committed data

Characterizing

Schedules based on:

Serializability

Recoverability

Cascadeless Schedule

 Τ1 Τ2
 R(X)

 W(X)

R(Y)

W(Y)

Abort

 R(X)

 W(X)

 Commit

a) Roll back

b) Now T2 reads the X

value that existed before

T1 started.

 Τ1 Τ2
 R(X)

 W(X)

R(Y)

 W(X)

W(Y)

Abort

 Commit

Another Cascadeless Schedule

… but not strict

8-49
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Cascadeless but NOT Strict

• Strict Schedule (Αυστηρό Χρονοπρόγραμμα):
• A schedule is strict if overriding of uncommitted data is not allowed.

• Formally, if it satisfies the following conditions:

– Tj reads a data item X after Ti has terminated (aborted or committed)

– Tj writes a data item X after Ti has terminated (aborted or committed)

• Why is this necessary? Eliminates Rollbacks!
– If a schedule is strict, a rollback can be achieved simply by

resetting the Xact variables to the value before its start value,
e.g.,

Strict Schedule
(Αυστηρό Χρονοπρόγραμμα)

Characterizing

Schedules based on:

Serializability

Recoverability

 Τ1 Τ2
// X=9

W(X,5)

 W(X,8)

 Commit

Abort

b) Rollback

X=9 now
a) Changing an item that

has not been committed

yet (X=8 now)

c) Why is this a problem?

Because X now became again

9 rather than X=8 or X=5!

Ti

Tj

8-50
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Characterizing Schedules
(Χαρακτηρίζοντας Χρονοπρογράμματα)

Characterizing

Schedules based on:

Serializability

Recoverability

• Venn Diagram Illustrating the Different ways to
characterize a Schedule based on
Serializability and Recoverability

