
6-1
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Topics in Databases

Lecture 6

External Sorting & Query

Evaluation

Chapter 13-12: Ramakrishnan & Gehrke

Demetris Zeinalipour

http://www.cs.ucy.ac.cy/~dzeina/courses/epl446

Department of Computer Science

University of Cyprus

http://www2.cs.ucy.ac.cy/~dzeina/

6-2
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

External Sorting Introduction
(Εξωτερική Ταξινόμηση: Εισαγωγή)

• Problem: We can’t sort 1TB of data with 1GB of RAM (i.e.,

more data than available memory) in main memory

• Solution: Utilize an External Sorting Algorithm

– External sorting refers to the sorting of a file that resides on

secondary memory (e.g., disk, flash, etc).

– Internal sorting refers to the sorting of an array of data that is in

RAM (quick-, merge-, insertion-, selection-, radix-, bucket-, bubble-

,heap-, sort algorithms we saw in the Data Struct. & Alg. Course)

• Objective: Minimize number of I/O accesses.

• External Sorting is part of the Query Evaluation /

Optimization subsystem

– Efficient Sorting algorithms can speed up query evaluation plans

(e.g., during joins)!

6-3
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Lecture Outline
External Sorting – Εξωτερική Ταξινόμηση

• 13.1) When does a DBMS sort Data.

• 13.2) A Simple Two-Way Merge-Sort
(Απλή Εξωτερική Ταξινόμηση με
Συγχώνευση)

• 13.3) External Merge-Sort (Eξωτερική
Ταξινόμηση με Συγχώνευση)
– Exclude 13.3.1: Minimizing the Number of

Runs.

• 13.4.2) Double Buffering (Διπλή
Προκαταχώρηση)

• 13.5) Using B+Trees for Sorting

Query Optimization

and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

6-4
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

When Does a DBMS Sort Data?
(Πότε μια Β.Δ Ταξινομεί Δεδομένα;)

• When Does a DBMS Sort Data? (~30% of oper.)

– Data requested in sorted order

• e.g., SELECT * FROM Students ORDER BY gpa DESC;

– Sorting is first step in bulk loading a B+ tree index.

• i.e., CREATE INDEX StuAge ON Students(age) USING

BTREE;

• Recall how leaf nodes of the B+tree are ordered.

– Useful for eliminating duplicate copies in a collection of

records.

• SELECT DISTINCT age FROM Students;

• i.e., to eliminate duplicates in a sorted list requires only

the comparison of each element to its previous element

so this yields a linear order elimination algorithm.

6-5
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Two-Way External Merge-Sort

 (Απλή Εξωτερική Ταξινόμηση με Συγχώνευση)

• Let us consider the simplest idea for external sorting

– Assumption: Only 3 Buffer pages are available

– Idea: Divide and Conquer (similarly to MergeSort, Quicksort)

• Idea Outline

– Pass 0 (Sort Lists):For every page, read it, sort it, write it out

• Only one buffer page is used!

• Now we need to merge them hierarchically

– Pass 1, 2, …, etc. (Merge Lists): see next page for merging concept

• For this step we need three buffer pages!

Main memory

buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

Pass 0

Main

memory

Buffer

Disk Disk

Main Memory Sort

Passes 1,2,… Sorted Run or simply Run

Διατεταγμένες Ακολουθίες ή

απλά Ακολουθίες

6-8
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Cost of Two-Way External Merge Sort
 (Κόστος Απλής Εξωτερικής Ταξινόμηση με Συγχώνευση)

• Each pass we read + write

each οf N pages in file.

• Number of passes:

 e.g., for N=7, N=5 and N=4

• Total (I/O) cost is:

 e.g., for N=7

– i.e., (read+write) * 7 pages * 4 passes

– That can be validated on the right figure

• Pass#0=2*7 Pass#1=2*7

• Pass#2=2*7 Pass$3=2*7

  1log2  N

)(#*2 passesN

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5

6

1,2

2,3

3,4

4,5

6,6

7,8

   

   

    31214log

413.215log

418.21
2log

7log
17log

2

2

10

10
2















 N2log

  564*7*2)17log(*7*2 2 

Pass 0

6-11
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

General External Merge Sort
(Γενικευμένη Εξωτερική Ταξινόμηση με Συγχώνευση)

 BNN /1   24/8 

• Let’s turn the 2-way Merge-sort Algorithm into a Practical Alg.

– Assumption: B Buffer pages are available

– Idea: Merge (B-1) pages in each step rather than only 2 (faster!)

• Idea Outline

– Pass 0 (Sort): Sort the N pages using B buffer pages

• Use B buffer pages for input

• That generates sorted runs e.g., N=8 and B=4 => N1=

– Pass 1, 2, …, etc. (Merge): Perform a (B-1)-way merge of runs

• Use (B-1) buffer pages for input + 1 page for output

• Number of passes will be reduced dramatically! (see slide 13)

Pass 0 Passes 1,2,…

6-13
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

• External Merge Sort is quite efficient!

• With only B=257 (~1MB) Buffer Pages we can sort N=1 Billion

records with four (4) passes … in practice B will be larger

• Two-Way Mergesort would require passes!   130110log 9

2 

* Results generated with formula:   BNB /log1 1

6-15
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Double Buffering
(Διπλή Προκαταχώρηση)

• An I/O request takes time to complete. Only think about all the

involved layers and delays (Disk Delays, Buffer Manager, etc)

• To reduce wait time of CPU for I/O request to complete, can prefetch

(προανάκτηση) into `shadow block’ (μπλοκ αντίγραφο)

• Main Idea: When all tuples of INPUTi have been consumed, the CPU

can process INPUTi’ which is prefetched into main memory instead of

waiting for INPUTi to refill. … same idea applies to OUTPUT.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

(B main memory buffers, k-way merge)

6-19
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

EPL646 – Advanced Database Systems

Overview of Query Evaluation

Chapter 12: Ramakrishnan & Gehrke

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

Department of Computer Science

University of Cyprus

http://images.google.com/imgres?imgurl=http://www.mas.ucy.ac.cy/NEWMAS/images/ucy_logo_clean.png&imgrefurl=http://www.mas.ucy.ac.cy/NEWMAS/images/&h=182&w=185&sz=41&tbnid=zwk0cIvSOnVJ3M:&tbnh=94&tbnw=96&hl=en&start=20&prev=/images?q=ucy+logo&svnum=10&hl=en&lr=&rls=GGLG,GGLG:2006-01,GGLG:en&sa=N
http://www2.cs.ucy.ac.cy/~dzeina/

6-20
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Overview of Query Evaluation
 (Επισκόπηση Αποτίμησης Επερωτήσεων)

• We will now focus on Query Evaluation (Αποτίμηση

Επερωτήσεων), specifically Query Optimization

(Βελτιστοποίηση Επερωτήσεων)

I
III IV

II

6-21
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Query Evaluation

 (Αποτίμηση Επερωτήσεων)
• We shall next discuss techniques used by a DBMS to

process (επεξεργάζεται), optimize (βελτιστοποιεί), and

execute (εκτελεί) high-level queries.

• A Query Evaluator (Απομιμητής Επερωτήσεων)

A) Parses (Αναλύει): Takes a declarative description (δηλωτική

περιγραφή) of a query (i.e., expression what we want without

describing how to do it (e.g., SQL).

• That is different from imperative descriptions (προστακτική

περιγραφή): expression of how to achieve the expected result

(e.g., C, C++, JAVA, etc):

B) Optimizes (Βελτιστοποιεί): Determines plan for answering query

(expressed as DBMS operations).

C) Executes (Εκτελεί): Executes method via DBMS engine (to obtain

a set of answers that answer a given query)

=> Next slides contain further details….

6-22
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Query Evaluation

 (Αποτίμηση Επερωτήσεων)
• A) Parser (Αναλυτής):

– Scanner (Λεκτική Ανάλυση): Identifies the language tokens – such as SQL

keywords, attribute names (γνωρίσματα), relation names (ονόματα

σχέσεων), etc.

– Parser (Συντακτική Ανάλυση): Checks the query syntax to determine whether it

is formulated according to the syntax rules (κανόνες γραμματικής) of the query

language.
• E.g., FROM TABLE SELECT *; // not syntactically correct.

– Validator (Επικύρωση Εγκυρότητας): Checks that all attributes and relation

names are valid (ορθά) and semantically (σημασιολογικά) meaningful names
• E.g., WHERE JOB = ’SECRETARY’ AND JOB = ’MANAGER’ is syntactically correct but semantically

incorrect. (will always yield an empty set as an employee can’t be both)

• Parsing yields an Internal tree representation of the query, called a

Relational Algebra Tree (Δένδρο Σχεσιακών Τελεστών) e.g.,

Parse

Optimize

Execute

SQL

Relational Algebra

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Relational Algebra Tree

6-23
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Query Evaluation

 (Αποτίμηση Επερωτήσεων)
B) Optimize (Βελτιστοποίηση)

• The DBMS must then devise an execution strategy

(query evaluation plan).

• That is difficult though, as a query might have many

alternative options!

• Best choice depends on many factors: size of tables,

existing indexes, sort orders (asc/desc), size of

available buffer pool, BM replacement policy,

implemented algorithm for operator evaluation (e.g.,

Sort-Merge Join, Hash-Join, etc).

• The process of choosing a suitable, «reasonably

efficient but most of the time NOT optimal» one is known

as Query Optimization (Βελτιστοποίηση

Επερωτήσεων).

Parse

Optimize

Execute

6-24
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Query Evaluation Plans

 (Πλάνο Αποτίμησης Επερώτησης)

• Query Evaluation Plan (or simply Plan): A Tree of

Relational Algebra operators (essentially σ-π-join [basic

block], while rest operators are carried out on the result)

with choice of algorithm for each operator.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Query Evaluation Plan A Query Evaluation Plan B

Pipelined: Temporary

Results not buffered or

written to disk

6-26
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Relational Operations
(Σχεσιακοί Τελεστές)

• We will consider how a DBMS implements:
– 14.1-14.2) Selection - Επιλογή (σ): Selects a subset of rows from a Relation.

– 14.3) Projection – Προβολή (π): Deletes unwanted columns from a Relation.

Subsequent slides

– 14.4) Join - Συνένωση () Allows us to combine two relations

– 14.5) Set-difference - Διαφορά (-): Tuples in Relation 1, but not in Relation 2.

– 14.5) Union - Ένωση (∪): Tuples in Relation 1 or in Relation 2.

– 14.6) Aggregation - Συνάθροιση (SUM, MIN, etc.) and GROUP BY

• Since each op returns a relation, operators can be composed!

• After we cover the operations, we will discuss how to optimize

queries formed by composing them.

• Relational Algebra operators are closed: a set is said to

be closed under some operation if the operation on

members of the set produces a member of the set.

6-28
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Schema for Examples
(Σχήμα για Παραδείγματα)

• Assume the following Schema:
Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

• Also assume the following values:

– Sailors: Each tuple is 50 bytes long, 80 tuples

per page, N=500 pages of such records stored

in the database.

– Reserves: Each tuple is 40 bytes long,100

tuples per page, M=1000 pages of such

records stored in the database.

6-29
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The Selection Operation I

(Ο Τελεστής Επιλογής I)
• Consider the selection query listed below.

• Selection with No Index, Unsorted Data:

– Idea: Scan R, checking condition on each tuple on-the-fly and

returning qualifying objects.

– Cost: M, where M is the # of pages for Reserves

• Can we improve the above approach?

– e.g., if data is Sorted or if Hash index on R.rname is available

then this query could be answered more quickly!

• We shall now only focus on simple σR.attr oper value(R)

queries and then extend the discussion to more complex

boolean queries (e.g., σR1.attr oper value AND R2.attr oper value (R))

SELECT *

FROM Reserves R

WHERE R.rname = ‘Joe’

6-30
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The Selection Operation II

(Ο Τελεστής Επιλογής II)

• Selection using No Index, Sorted Data:

– Idea: Perform binary search over target relation; Identify

First Key; and finally scan remaining tuples starting at

first key.

– Search Cost: log2M

– Retrieval Cost: #matching_records / PageSize (i.e.,

#matching_pages)
• For the R relation the search cost is: log21000 ~ 10 I/Os

• In practice it is difficult to maintain a file sorted.

• It is more realistic to use a B+Tree using

Alternative 1 (see next slide)

6-31
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The Selection Operation III

(Ο Τελεστής Επιλογής III)
• Selection using B+Tree Index:

– Idea: Use tree to find the first index entry that points to a

qualifying tuple of R; Then scan the leaf pages to retrieve all

entries in the key value that satisfy the selection condition.

– Search Cost: logFM, (typically 2-3 I/Os) F:branching factor

– Retrieval Cost: i) Unclustered: #matching_records (each record

on separate page); Clustered: #matching_records/PageSize (i.e.,

#matching_pages)

• Why is a B+Tree NOT always superior to Scanning?
– Query: SELECT * FROM Reserves R WHERE R.rname = ‘Joe’

– R relation features 1000 pages.

– Assumption: Selectivity (επιλεξιμότητα) of Query is 10% (i.e., 10%*1000

pages * 100 tuples/page = 10,000 tuples)

– Clustered Index Cost: 3 I/Os + 100 I/Os (tuples on 100 consec. pages)

– Unclustered Index Cost: 3 I/Os + 10,000 I/Os (each tuple on differ. Page)

• It is cheaper to perform a linear scan that only costs 1000 I/Os!

Data entries

Data Records

UNCLUSTERED

6-32
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The Selection Operation IV

(Ο Τελεστής Επιλογής IV)
• Selection using Hash Index:

– Idea: Use hash index to find the index entry that points to a

qualifying tuple of R; Retrieve all entries in which the key value

satisfies the selection condition.

– Search Cost: Const (typically 1.2 I/Os, recall lin./extd. hashing)

– Retrieval Cost: i) Unclustered: #matching records (each record on

separate page); Clustered: #matching_records/PageSize (i.e.,

#matching_pages)

• Example

– Query: SELECT * FROM Reserves R WHERE R.rname = ‘Joe’

– Assumption: Selectivity (επιλεξιμότητα) of Query is 10% (i.e., 10%*1000 pages * 100

tuples/page = 10,000 tuples)

– Clustered Index Cost: 1.2 I/Os + 100 I/Os (tuples on 100 consec. pages)

– Unclustered Index Cost: 1.2 I/Os + 10,000 I/Os (each tuple on differ. Page)

• Again, it is cheaper to perform a linear scan that only costs 1000 I/Os.

Example of Unclustered Index

6-34
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Complex Selections
(Σύνθετες Επιλογές)

Selection WITHOUT Disjunctions

Template: σ A  B  ….  Z (R)

First Approach

• Compute the most selective access path R’ = σA (i.e., the one that

returns the fewest irrelevant results compared to σB (R) … σZ (R))

– This could be a composite selection e.g., (σ A  B  C(R)) … depends on

what access methods (indexes) are available.

• Then apply on-the-fly the rest conditions on R’ (i.e., σ B  ….  Z(R’))

Example

• Consider day<8/9/14 AND bid=5 AND sid=3.

• A B+ tree index on day can be used; then, bid=5 and sid=3 must

be checked for each retrieved tuple on-the-fly.

• Similarly, a hash index on <bid, sid> could be used; day<8/9/14

must then be checked on-the-fly.

That is in CNF
(conjunction of clauses, where a

clause is a disjunction of literals)

6-35
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Complex Selections
(Σύνθετες Επιλογές)

Selection WITHOUT Disjunctions

σ A  B  ….  Z (R)

Second Approach

• Compute RA = σA (R) and RB = σB (R), and … and , Rz = σz (R) using

independent access methods (if indexes are available)

• Intersect RID Sets: sort(RA) ∩ sort(RB) ∩ … ∩ sort(Rz)

– Note: Intersecting sorted runs is cheaper than intersecting arbitrary runs.

• Each DBMSs uses different ways to achieve RID intersection.

Example

• Consider day<8/9/14 AND bid=5 AND sid=3.

• If we have a B+ tree index on day and a hash index on sid, both using

Alternative (2)

• Use both indexes (i.e., day<8/9/14 [B+tree] and sid=3 [Hash Index])

• Intersect results, retrieve records and then check bid=5.

That is in CNF

6-37
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

The Projection Operation
(Τελεστής Προβολής)

• Consider the projection query πsid,bid(Reserves) listed

below.

– recall that in relational algebra all rows have to be

distinct as the query answer is a set.

• The projection operator is of the form

πattr1,attr2,…,attrm(R)

• The implementation requires the following

– Remove unwanted columns (on-the-fly)

– Eliminate any duplicate tuples produced.

• This step is the difficult one!

• We will describe a technique to cope with duplicate

elimination based on Sorting

SELECT DISTINCT (R.sid, R.bid)

FROM Reserves R

6-38
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Projection Based on Sorting
(Προβολή μέσω Ταξινόμησης)

• First approach: use External Merge Sort Algorithm

• Phase 1: Create Internally Sorted Runs (selected attrib.)

– Scan R and produce a set of tuples that contain only the desired

attributes i.e., only <R.sid, R.bid> (First Step of ExternalMergeSort)

• Read_Cost: M I/Os & Write_Cost: Τ I/Os, where T is some fraction of M

(i.e., depending on fields projected out) Total: M + T I/Os

• Example: Assume that T=250 then Total Cost: 1000 + 250 = 1250 I/Os

Also Remove

Unnecessary

Attributes

SELECT DISTINCT (R.sid, R.bid)

FROM Reserves R

6-39
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Projection Based on Sorting
(Προβολή μέσω Ταξινόμησης)

• Phase 2: Merge tuples using the External Sort Phase 2

based on the projected keys (i.e., <R.sid, R.bid>)

– Cost: 2T*(#passes) I/Os where #passes:

(i.e., cost of the External Merge Sort without first step)

– Example: Using B=20 Buffer pages and T=250 I/Os

• Step 3: Scan the sorted result (on-the-fly, consequently

costs nothing), comparing adjacent tuples and discard

duplicates (could have been carried out during Phase 1-2)
• e.g., <1,2>, <1,2>, <2,2>, <2,3>,

– Total Cost: M + T+ (2T *)

– Using Example: 1000 + 250 + 2*250*2 = 2250 I/Os

– This step could also have been carried out during steps 1-2.

  BTB /log 1

   220/250log19  Total Cost: 2*250*2 = 1000 I/Os Passes:

  BTB /log 1

6-42
EPL646: Advanced Topics in Databases - Demetris Zeinalipour (University of Cyprus)

Use of Indexes for Projections
(Χρήση Ευρετηρίων για Προβολή)

• So far we have NOT considered using Indexes for Projections

• If an existing index contains all wanted attributes as its search

key then we can apply an index-only scan.

– e.g., Q=“SELECT DISTINCT R.rname FROM R” and Hash Index <R.rname> is

available.

– We can use the index to identify the R.rname set (i.e., index scan). We must

then use sorting or hashing to eliminate duplicates.

• If an ordered (i.e., tree) index contains all wanted attributes as

prefix of search key, can do even better:

– e.g., Q=“SELECT DISTINCT R.rname FROM R” and B+Tree Index <R.rname>

is available.

– We can use the index to identify R.rname set (index scan) discard unwanted

fields, compare adjacent tuples to check for duplicates.

– We do not even need to apply sorting or hashing for the duplicate

elimination part!

