Department of Computer Science
University of Cyprus

EPL646 — Advanced Topics in Databases
Lecture 2

Storage |: Storage and Indexing

Chap. 8.1-8.5: Ramakr. & Gehrke
* exclude 8.4.5-8.4.6

Demetris Zeinalipour
http://www.cs.ucy.ac.cy/~dzeina/courses/epl646

21

ElNA646: Evotnta A

EocwTtepikn Acitoupyia evoc RDBMS

Ameipol XprioTeg o oo

AedouEVWV

Unsophisticated users (customers, travel agents, etc.) programmers, DB administrators
[Web Forms] [.\|‘|‘|\'~~IH\‘H Front l'ml\] [SQL Interface]
LS 1 e
. . | Pt S s »
SQL COMMANDS shows command flow
v
Plan Executor Parser shows interaction
Query
Operator Evaluator Optimizer Evaluation
J, Engine
Transaction Files and Access Methods
Manager J{
Recovery
Buffer Manager Manager
Lock =
Manager ‘L
Concurrency Disk Space Manager .
Control DBMS.
, i = -
ATT00ONAKEUQN —] —
Index Files == shows references
KA \ System Catalog
r
Data Files 4—/
MeTta-TTAnpo@a@pIwv __1 | paraBase E I—I /\6 4 6

2-2

Context of next slides

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Data on External Storage

(Aedoueva otn Aeutepetouaca Mvnun)

A DBMS stores vast amounts of data and the data has
to persists across program executions.

Therefore, data is stored on external storage and
fetched into main memory as needed for processing.

The unit of information that is read and written to a disk
Is called Page (ZeAida), e.g., 4KB 1 8KB

Higher layers of the DBMS view these pages as unified
Files (Apxeio) and can read/write Records (Eyypagég,
[MAg1a0deg) to these files.

— Consider a data record (id:4B, name:28B) and a 4096B (4KB)
page size. That would yield ~128 records / page (some bytes go
to headers and other auxiliary structures).

What is the basic performance cost in a DBMS?
— /O (Input/Output): # pages read/write for a given operation.
— Complexity of algorithms in DBMSs is expressed in I/Os

2-5

Data on External Storage
(Aedopueva otn Aeutepevouaca Mvnun)

Sorted File (by composite key <age,sal>) Input /
Page-1 Page-2 Page-B Output
<22,6003> || <33,4003> <44 4000> . ,
<25,3000> || <40,6003> <44 5004> /
<29,2007> <50,5004> /

= 4

Py

DBMS PARN
(File and Index Layer) in Main Memory
o/
/-
/
/
/
/ DB

2-6

Storage Mediums
(MEoa ATToBrkeuong)

— But reading several consecutive pages is much,, . . .
cheaper than reading them in random order of DBMSs

« Tapes: Can only read pages in sequence
— Cheaper than disks; used for archiving (apxelo8€tnon)
* Flash Memory (Solid State Disks): Reading data at
the speed of main memory, writing is slower.

— More expensive than disks; used for applications with
read workloads that require fast random accesses.

2-7

Short-term Future of Storage
(NVM/NVRAM/NVDIMMs)

Hardware Slot: non-volatile dual in-line memory module (NVDIMM)
Memory Type: Non-volatile random-access memory (NVRAM) or Non-volatile memory (NVM) or non-volatile storage (NVS)

NVM PROPERTIES — see video: https://goo.gl/f2LbKv
— Byte addressable — Loads and stores unlike SSD/HDD

— High random write throughput — Orders of magnitude higher than
SSD/HDD — Smaller gap between sequential & random write throughput

— Read-write asymmetry & wear-leveling — Writes might take longer to
complete compared to reads — Excessive writes to a single NVM cell
can destroy it (similar to SSD — can be handled by controller)

NON-VOLATILE MEMORY (NVM)

DRAM NVM SSD

Like DRAM, low latency loads and stores

A
i

&
— 4

. e.g., Intel Optane 3D XPoint
ACM SIGMOD 2017 Tutorial: https://www.cc.gatech.edu/~jarulraj/talks/2017.nvm.sigmod.pdf

Non-Volatile Memory Database Management Systems, Joy Arulraj, Georgia Institute of Technology, Andrew Pavlo, 2-8
Carnegie-Mellon University.
ISBN: 9781681734842 | PDF ISBN: 9781681734859, Hardcover ISBN: 9781681734866, Copyright © 2019 | 191 Pages

Like SSD, persistent writes and high density

https://www.cc.gatech.edu/~jarulraj/talks/2017.nvm.sigmod.pdf

Cloud Storage
(AWS Case Study — 2019)

Amazon Elastic Block Store (EBS) [OLTP & OLAP]

— persistent local storage for Amazon EC2, for relational and NoSQL databases, data warehousing,
enterprise applications, Big Data processing, or backup and recovery
Amazon Elastic File System (EFS) [Filesystem]

— Asimple, scalable, elastic file system for Linux-based workloads for use with AWS Cloud services and on-
premises resources. It is built to scale on demand to petabytes without disrupting applications, growing and shrinking
automatically as you add and remove files, so your applications have the storage they need — when they need it.

Amazon FSx (EFS) [Maching Learning]

— A fully managed file system that is optimized for compute-intensive workloads, such as high performance
computing, machine learning, and media data processing workflows, and is seamlessly integrated with
Amazon S3

Amazon S3 [Storage]

— A scalable, durable platform to make data accessible from any Internet location, for user-generated content, active archive,
serverless computing, Big Data storage or backup and recovery

Amazon Glacier [Deep Storage — Tertiary]

— Highly affordable long-term storage that can replace tape for archive and regulatory
compliance

Amazon Backup

— A fully managed backup service that makes it easy to centralize and automate the back up of
data across AWS services in the cloud as well as on premises using the AWS Storage
Gateway.

2-9

The Future of Storage

http://www.nature.com/news/how-dna-could-store-all-the-world-s-data-1.20496

STORAGE LIMITS

Estimates based on bacterial genetics suggest that digital DNA
could one day rival or exceed today’s storage technology.

O {
Hard Flash JBacteriaI
B memory DNA
Read-write speed ~3,000- .
(us per bity 2 5,000 100 <100
Data retention

(years) b >10 >10 >100

Power usage _ g
(watts per gigabyte) D 0.04 0.01-0.04 <1010
Data density S e o P

(bits per cm?®)

1gr DNA = 230-730PB of data ©
1 MB of DNA=3,500% ®
Might one day create “global seed vault” (i.e., offer tertiary storage
alternatives for archiving — not replace HDD/SSD) 2.10

The Future of Storage

« 010010010

23231312 Encoding §§§§2§ DNA SyntheSIS Encapsulatlon Py
111010110 CTTGCC l_ y
000101000 GGCTCT Sol-gel A
111010010
Thermal
I I damage
simulation
010010010
010101010 : CGCTGT N
ienTots Decoding ircca Sequencmg DNA Release | N
| |
111010110 < CTTACC (T)
000101000 GGGTCT i
111010010

Credits: https://goo.gl/vsJagQ

Microsoft/Univ. of Washington (2016): stored 100
literary documents of size 220MB | https://goo.gl/1GyiyZ

2-11

https://goo.gl/vsJggQ
https://goo.gl/1GyiyZ

Context of next slides

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

2-13

Disk Space Manager (DSM)
(A1axeipioTic Xwpou Aickou)

 DSM: Supports the concept of a page as a unit of
data and provides commands to allocate/deallocate,
read/write a page to external storage.

— Size of Page == Size of Disk Block, in order to support
read/write operations in one |/O operation.

— The higher layers in the DB architecture (i.e., the Buffer
Manager) interact directly with the DSM.

* Other Duties: Keep track of Free Blocks.

— Initially a DB is stored on consecutive disk blocks (when it
acts in its own partition) or inside a file (when it is stored
inside an Operation System file).

— Subsequent deletions might easily create “holes” in that
sequence (either file or disk), thus the DSM needs to track

the free pages. 214

Context of next slides

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Disk Space Management

2-15

Buffer Manager (BM)
(AlaxeipioTng Kpugpng Mvinpung)

BM: Subsystem that is responsible for loading pages from
external storage to the main memory buffer pool

— File & Index layers make calls to the buffer manager.

— ldea: Keep as many blocks (pages) in memory as possible to
reduce disk accesses.

Replacement Policies

— e.g., LRU (Least-Recently-Used pages ... are discarded =>
the oldest are discarded first), MRU (Most-Recently-Used,
the newest are discarded first), LFU (Least-Frequently-Used)

Prefetching or Double Buffering

— ldea: speed-up access by pre-loading “future”-needed data

— Cons: requires extra main memory; no help if requests are

random
2-16

Context of next slides

Query Optimization
and Execution

Relational Operators

Buffer Management

Disk Space Management

2-17

Alternative File Organizations
(EvaAAakTikn Opyavwaon ApXEiwv)

File organization (Opyavwon Apxeiou): Method for
arranging a collection of records and supporting the
concept of a file.

In all file organizations the records are accessed by their

respective RecordID

— Note that a Record ID (RID) usually has the following structure
(PagelD, SlotID), where SlotID defines the offset : i) inside

PagelD at which RID begins; or ii) inside the Slot Directory that
resides within page PagelD (explained in next lectures)Page i

. . r=- - - T D
Basic Questions | RID_1 T_ o _T_FED__QJ

— How to store data inside data records (fixed-length records vs.
variable-length records)?

— How to store data-records inside a file (heap file, sorted file,
indexed file)?

— How to make a certain File Organization more powerful by
complementing them with an Index? 218

File Organization Types
(Tutrol Opyavwonc Apxeiwv)

Heap files (Apxeia 2wpou):. Suitable when typical access
Is a file scan (ocapwon apxeiou) retrieving ALL records
— Suitable for queries like “SELECT * FROM Employees;”

Sorted Files (Tacivounuéva Apxeia): Best if records must

be retrieved in some order, or only a ‘range’ (d1acTnuO)

of records is needed.

— Suitable for queries like “SELECT * FROM Employees WHERE

20<age and age<30;”

Each file organization makes certain operations efficient, but we

are interested in supporting more than one operation!

To deal with such situations the DBMS builds one or more indexes.

An index on a file is designed to speed up operations that are not
efficiently supported by the basic organization of that file.

2-19

Indexes (Access Methods)
(Eupetnpia Aeutepetouocac Mvnunc)

* An index is a data structure that has index
records which point to certain data records.

* An index can optimize certain kinds of
retrieval operations (depending on the index).
* Definitions

— Index Page (ZeAideg EupeTnpiov) vs. Data

Pages (ZeAideg Asdopévwy): Index Pages store
nierae] Index records to data records. Both reside on disk

mE Dbecause we might have many of these pages!

— Data Record (Eyypagpni Asdopévwy): Stores the
- actual data e.g., (59,Mike,3.14) .

UL _ Index Record (Eyypaen Eupernpiou): Stores
the RID of another index record or a data record.

2-20

B+ Tree Index Overview
(Z0vown Tou EupaTr]plou B nde;l:,ree)

Balanced Tree (looluyiopévo Aévopo)
Height=L_log,NJ, N:#data-entries, b=branching

S o o

Index File
(Index Pages)

[4\

® factor e.g., log,,100=2 _’ | -
4—/ ot <>
Non-leaf Pages \17
(Index Entries)

o oo Kpq .
el]zl | Branching Factor
od T or Fan-out

-
-
-
-
e
-

[4\ [4\

Leaf Pages{ 33 [""°|38 | (44 |"°°[46 | |59 |°""|61 | |69 |°""|99
,('-Pﬁta Entries | K*) (Sorted by search key) |
O o
= O
L ®©
s O \4
- .
8 S 59 Mike 3.14

+ Non-leaf pages have index entries; only used to direct searches.

+ Leaf pages contain data entries K¥, and are chained (prevé&next)

+ The data records e.g., (59,Mike,3.14) could have been stored
inside he respective data entry. Then the index file would be
the same with the data file. =» Index File Organization.

(Mapadeiypua Xpnonc B+ Tree)

Example B+ Tree

Roo&

|

|17
N

Note how data entries
in leaf level are sorted

ol

8

221

24

27"

29*

33*

N
Entries <:GD/ Entries >@
5 13 27 30
4 N h A <
* * 7* * 14* 16*

34*

38*

39*

-ind 28*? 29*? All > 15* and < 30*
nsert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
— And change sometimes bubbles up the tree

2-23

Structure of Data Entry k*
(Aopn Tng Kataxwpnong K*)

* |In a data entry k* we can store:
— Alternative 1: <k> (Key Value), or

— Alternative 2: <k, RID>(Key Value, Data
record with key value k)>, or

— Alternative 3: <k, [RID,, RID,, ..., RID,]>,
where RID; is a data record with key value k.

* Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.

— In particular, ANY of the above alternatives
might be used with ANY index (hash or tree)

2-24

Data Entry k* Examples
(Mapadeiypata Kataxwpnong k*)

 Alternative 1: <k>

Results in a 59, Mike, 3.14 Index Data Entry
Index File Organization!

* Alternative 2: <k, RID>

59, RID#{) Index Data Entry
59 Mike 3.14 Data Record
RID#10
. Alternative 3: <k, [RID,...,RID]>
59, RID#10, RID#61, #RID82 Index Data Entry
59 MikeL?,.M/ 59 Chris 33.14 \59} 53.14 Data Record
RID#10 RID#61 RID#82

2-25

Clustered vs. Unclustered Indexes
(OpadoTtroinueva vs. Mn-OuadoTtroinueva Eupetnpia)

* Clustered Index (Opadotroinuévo Eupetnpio): If order
(diatagn) of data records is the same as, or close to’,
order of data entries, else called unclustered index.

Alternative 1 implies clustered (since datarec same as dateentry)
Faster Range Queries: Consecutive data records reside on the same page.

Alternatives 2,3 are usually unclustered.
- Slower Range Queries: Consecutive data records reside on different pages

CLUSTERED UNCLUSTERED
<> < Data entries Data entries <
1\ ANN\N m yad

/AR NN aNiys=as S

Data Records Data Records 2.29

Lecture Outline
Overview of Storage and Indexing

Note: The subsequent slides aim to qualitatively compare
(troiotikn ouykpion) the file organization and indexes
alternatives we introduced previously. Query Optimization

and Execution

8.4) Comparison of File Organization
— System and Cost Model (MovtéAo KéaToug) !

— Heap Files, Sorted Files and Clustered Files
(Apxeia: Zwpou, Tagivounuéva, OpadoTroinuévarliskopace Management

— Comparison on |/O Costs (Zuykpion KoéoTtoucg I/O)

8.5) Indexes and Performance Tuning (Pubuion ETtidoonc)
— Understanding the Workload (ExTipwvtag tov ®6pT10 Epyaciag)
— Index Specification in SQL (AnAwaon Eupetnpiwyv otnv SQL)
— Index-Only Plans ([NAava pye Movo 10 Eupetiipio)

— Index Selection Guidelines (Odnyiec EtAoync Eupetnpiwv)
2-33

System Model

(MovTéAO 2uoTnuaTOC)

Sorted File (by composite key <age,sal>)
Page-1 Page-2 Page-B .
<22,6003> || <33,4003> <44,4000> | | .
R ||| <25,3000> || <40,6003> <44,5004>)
<29,2007> <50,5004>

DBMS PARN
(File and Index Layer) in Main Memory
NV 4

Assumptions: Average case analysis, /
no processing costs, no prefetching /

Average
Time for
j /10 = D/
. p

DB

2-35

Operations to Compare
(Mpacelc TTou 6a 2uyKkpIiBouv)

Scan (Zapwon): Fetch all records from disk
e.g., SELECT * FROM Employees;

Equality Selection (EtmiAoyn looTnTag)
e.g., SELECT * FROM Employees WHERE age=33 AND sal=4003;

Range selection (EmiAoyn AlIaCTANATOG)
e.g., SELECT * FROM Employees WHERE age BETWEEN 35 AND 45;
e.g., SELECT * FROM Employees WHERE 35<age AND sal<=4000;
But NOT: SELECT * FROM Employees WHERE sal>40; (tree index is on age &)

Insert a record (Eicaywyni Eyypa®png)
e.g., INSERT INTO Employees (age, sal) VALUES (45, 3000);

Delete a record (Alaypaon Eyypa®ng)
e.g., DELETE FROM Employees WHERE age=45;

2-38

Heap File Analysis
(AvaAuon Apxeiou 2wpou)

 Heap File Assumptions
- Equality Selection on key <age,sal>
- Equality Selection produces exactly 1 match.

ScanAll Eq. Selection | Range Selection Insert Delete

BD 0.5BD BD 2D 0.5BD+ D

On average we Traverse all to find Read (last) PageB Find Page +

All records traverse V2 records pages in range + Write PageB Delgte Page
H Fil ' raer

eap File (records in random order) | Average 'l,'ifne for

Page-1 Page-2 Page-B . 11Q=D

<40,6003> || <29,2007> <22,6003>

<25,3000> || <33,4003> <50,5004> <

<44.5004> || <44.4000> \ i

_________ L
DBMS (File and Index Layer) //
/ 2-39

i DB

Sorted File Analysis
(AvaAuon Taclvounuevou Apxeiou)

« Sorted File Assumptions
- Files compacted after deletions (no holes in pages)

ScanAll | Eq. Selection | Range Selection Insert Delete
BD Dlog,B D(log,B + #matches) Dlog,B + BD Dlog,B + BD
All records Binary Search over B Binary Search for 1 Binary Search for Same as Insert but
pages. Each I/O tuple, then transfer Correct Position + %2 pages are shifted
costs D rest qualifying pages Shift (Read/Write) V2 back in order to
subsequent pages 9ompact the file
(i.e.. 2x0.5BD=BD)
SortedFile .
Page-1 Page-2 Page-B A!erf?l;f'rfrge for
<22,6003> || <33,4003> <44,5004> e
<25,3000> || <40,6003> <50,5004> ..
<29,2007> || <4¢,4000> \ ‘
X t _ 7
|
and Ihdex Layer) //
/ 2-40

Eq."selection p DB

Understanding the Workload

(EkTipwvTag Tov @opTo Epyaaciag)

* | Workload (®opT1og Epyaciag): The typical mix of i)
Query (Select) and ii) Update (Insert/Delete/Update)
operations in a DBMS system.

* 1) For each query/update in the workload :
- Which types are involved (Select,Insert,Delete,Update)
- Which relations/attributes(oxéocig, xapakTnpioTika) does it access?

- Which attributes are involved in selection/join (e1TIAoyry/ ouvévwaon)
conditions? How selective are these conditions likely to be?

Selectivity (EmiIAekTiIKOTNTA TNG 2UVONKNG): The fraction of

tuples selected by a selection condition is referred to as the
selectivity of the condition.

E.g., O .ge>40(EMPLOYEE) returns 10 out of 1000 tuples. Selectivity=1%

2-42

Index Specification in SQL
AnAwon Eupetnpiou otn SQL

« The SQL standard (up until SQL 2008) does not
include any statement for creating/dropping
iIndexes.

 However, in practice every major DBMS
supports such indexes (access methods) such
as Btrees, Hash, Rtrees, GIST.

Example from the PostgreSQL DBMS
CREATE INDEX AgeSalindex

ON Employees (age, sal)

USING BTREE

WHERE sal > 3000

2-43

Choice of Indexes
(ETniAoyn Twv Eupetnpiwv)

 The DBA is usually confronted with several
guestions in regards to indexes:
- Which relations should have indexes?

- What type of index should we use?
Clustered? Hash” Btree?

- What attribute(s) should be the search key?
- Should we build several indexes?

SQL Server 2014 Index Guidelines: https://docs.microsoft.com/en-
us/sql/2014-toc/sql-server-index-design-guide?view=sql-server-2014

Select Compute Scalar PurchaseOrderDetail.PK

Cost: 0%
Cost: 13% 2-45

Index Selection Guidelines
(Oonyiec EmAoync twv EupetTnpiwyv)

Tip 1: Consider the queries executed most of the

time (most important ones), e.g., for Oracle :

— SELECT executions, sql_text FROM v$sqglarea ORDER BY executions desc;
— V$ => Oracle’s Dynamic Performance Views

Tip 2: Try to choose indexes that benefit as many
queries as possible

Tip 3: Attributes in WHERE clause are candidates
for index keys.

Tip 4: Hash vs. Tree

— Exact match condition suggests Hash index.
— Range query suggests tree index.

2-46

Index Selection Guidelines
(Odnyiec EmAoync Twv EupetTnpiwy)

Tip 5: Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it!

Tip 6: Since only one index can be clustered per
relation, choose it based on important queries that
would benefit the most from clustering.

Tip 7: Multi-attribute <a,b,c> search keys should
be considered when a WHERE clause contains
several conditions (e.g., a=3 and b>3 and ¢c>3).

Tip 8: Indexes can make queries go faster but
updates become slower. Indexes also require
additional disk space, choose them wisely!

2-47

